
03: CONTROL STRUCTURES

Programming Technique I

(SCSJ1013)

Boolean and Logical Operator

• In C++ logical data declared as bool data type

e.g.

bool variable_name;

• There are only two values: true and false

• Type-casting bool to int:

• true => 1

• false => 0

Example

int number;

number = 2 + true;

cout << number; //output: 3

• Type-casting int to bool:

• A Zero value => false

• A Non-Zero value => true

bool b = false; // b initially is false

int number = 0;

b = -10; // Now, b is true

b = number; // Here, b is false again

Example:

Boolean and Logical Operator

What would be printed by this code segment

bool b;

int p;

int q = 5;

b = q;

p = b;

cout <<“The value of p is “ << p <<endl;

Boolean and Logical Operator

Logical operators truth table

Operations for logical and/or

Relational operators

Logical expression

Example:

int a=10;

cout << a;

cout << (a==1);

cout << (a>1);

cout << (a=5);

a = (a != 5);

out << a;

Logical operator complements

• Another way to complement an expression is just putting a Not

operator (!) in front of it.

Example: Complement of n==0 is
!(n==0)

• When to use complement?

Example 1:

n==0

Print

n

No (False)

Yes (True)

n != 0

Print

n

True

False

In order to convert

the flowchart to

C++ code, this part

must be a “Yes

(True)”

Solution:

Complement the

condition.

!(n==0) or n != 0

• When to use complement?

Example 2:

Solution:

Complement the

condition.

!(number<1) or

(number >=1)

number = 10

number = number -1

Print

number

number< 1

True

False

number = 10

number = number -1

Print

number

number >= 1

False

True

The iteration

part must be a

True

• Sometimes your programs need to make logical choices.

• Example:

IF score is higher than 50

THEN grade is PASS

ELSE grade is FAIL

• In C++, this corresponds to if statement with three parts:

if (score > 50) //part 1

{

grade = PASS; //part 2

}

else

{

grade = FAIL; //part 3

}

Selection / Branch

• Part 1 : the condition - an expression that evaluates to true

or false.

if statement

if (score > 50)

{

grade = PASS;

}

else

{

grade = FAIL;

}

score > 50 grade = PASS

grade = FAIL

No

Yes

if (score > 50)

else

{

grade = FAIL;

}

• Part 2 : the TRUE-PART - a block of statements that are executed if
the condition evaluates to true

{

grade = PASS;

}

if statement

score > 50 grade = PASS

grade = FAIL

No

Yes

if (score > 50)

{

grade = PASS;

}

else

• Part 3 : the FALSE-PART - a block of statements that are
executed if the condition evaluates to false

{

grade = FAIL;

}

if the condition
evaluates to false,

the TRUE-PART is skipped.

if statement

score > 50 grade = PASS

grade = FAIL

No

Yes

• Sometimes there is no FALSE-PART. The “else” is

omitted

if (attendance < 0.8)

{

exam_grade = FAIL;

}

if statement

attendance < 0.8

exam_grade = FAIL

Yes

No

• If the TRUE-PART (or FALSE-PART) consists of only

one statement, then the curly braces may be

omitted.

• Example: these two statements are equivalent:

if (score > 50)

{

grade = PASS;

}

else

{

grade = FAIL;

}

if (score > 50)

grade = PASS;

else

grade = FAIL;

if statement

• Sometimes there are more than two parts. In those
cases you may use nested if-else statements:

if (score > 90)

letter_grade = 'A';

else if (score > 75)

letter_grade = 'B';

else if (score > 60)

letter_grade = 'C';

else if (score > 50)

letter_grade = 'D';

else

letter_grade = 'F';

score > 90 letter_grade = AYes

score > 75 letter_grade = BYes

No

score > 60 letter_grade = CYes

No

score > 50 letter_grade = DYes

No

letter_grade = F

No

if statement

score > 90 letter_grade = AYes

score > 75 letter_grade = BYes

No

score > 60 letter_grade = CYes

No

score > 50 letter_grade = DYes

No

letter_grade = F

No

score > 90 letter_grade = AYes

No

score > 75 letter_grade = BYes

score > 60 letter_grade = CYes

No

score > 50 letter_grade = DYes

No

letter_grade = F

No

Let’s look closer

It is actually a regular if-

else with the FALSE-PART is

another if-else statement

If (score>50)

{

letter_grade = ‘A’;

}

else {

……..

…….

}

if(condition)

statement;

if (condition)

{ statement;

statement;

}

if (condition)

{ statement;

statement;

}

else

{ statement;

statement;

}

• Three forms of if statements

are shown at the next table.

• The condition must be placed in

parentheses

• Statement may exist either as a

single statement or as a

collection of statements (also

called compound statement)

if statement

• A compound statement is one or more statements that are
grouped together by enclosing them in brackets , {}.

• Example:
if (value>0)

cout << value;

value = value * 2;

if (value>10)

{
value = 10;

cout << value;

}

This is a single statement. The

semi-colon belongs to “if” not

to “cout”

a single statement

This is a compound

statement which

consists two single

statements.

• The condition must be placed in parentheses

Related issues

Example:

if (0<x) && (x<10) //syntax error

cout << x;

Example: Print x only if (2<x<9)

if (2<x<9)

cout << x;

• But be careful when converting mathematical comparisons. Some of

them are not straight forward

Related issues

There is no syntax error, but this leads to a logic

error due to the misinterpretation.

The condition always evaluates to true, whatever

the value of x

Let say x=1

(2<x<9)

(2<1<9)

(false<9)

(0<9)

true

Let say x=5

(2<x<9)

(2<5<9)

(true<9)

(1<9)

true

• The condition must evaluate to a Boolean value (i.e. either true or

false)

• There are only two types of expression that result a Boolean value
o Comparison expression (e.g. a>2)

o Boolean expression (e.g. b && false)

• If the result of the condition is not a Boolean, it will be type-casted

Related issues

Example:

int n=0;

if (n)

cout << “Yes”;

else

cout << “No”;

The condition evaluates to

0. It then is type-casted to

Boolean, becomes false

Example:

int n=0;

if (n + 5)

cout << “Yes”;

else

cout << “No”;

The condition evaluates to

5. It then is type-casted to

Boolean, becomes true

Example:

int x=0;

if (x=0)

cout << “Yes”;

else

cout << “No”;

Remember! This is an assignment

expression, not an equality.

The value of the expression is 0. It then is

type-casted to Boolean, becomes false.

The result is always false.

Example:

int y=5;

if (y=10)

cout << “Yes”;

else

cout << “No”;

Remember! This is an assignment

expression, not an equality.

The value of the expression is 10. It then

is type-casted to Boolean, becomes true.

The result is always true.

Example:

int y=1;

if (y=5)

cout << y

Remember! This is an assignment

expression.

The condition always evaluates to true.

The value of y is changed to 5 due to the

side-effect caused by the assignment

operator

• Be careful when using the Boolean operator NOT (!)

Related issues

Example:

int n=5;

if (!n>9)

cout << “Yes”;

else

cout << “No”;

Operator ! has higher precedence then operator

>. So, it is executed first.

Expression !n is evaluated as !true where n is

type-casted from integer 5 to Boolean true.

The result is false

The expression is further evaluated as (false>9).

The false value is then type-casted to 0, since it will

be compared with an integer. The expression then
looks like (0 > 9) and the final result is false

Example:

int n=5;

if (!(n>9))

cout << “Yes”;

else

cout << “No”;

Example:

if (x<3)

cout <<"Yes" << endl;

cout <<"No" << endl;

• Statements should be indented correctly to avoid misinterpretations

Related issues

Let say x=1
Let say x=3

Example:

if (x<y)

cout << x;

x = y;

else

cout << y;

Syntax error – misplace else.

There must only be a single statement
before else. If more than that, use a

compound statement.

Example:

Print x only if it is an odd number less than 10, otherwise print “Wrong number”

if (x%2==1)

if (x<10)

cout <<x;

else

cout << “Wrong number”;

There is no syntax error, but this leads to a logic

error due to the misinterpretation.

The else part actually belongs to the second if (if

(x<10)), not to the first one

Let say x=7,

Output:

7

Correct!

Let say x=11,

Output:

Wrong Number

Correct!

But, when x=12,

There is no output. This is incorrect.
It suppose to print “Wrong number”

Example:

if (x<3);

cout <<"Yes";

• Null statements are statements that do nothing

Related issues

The semi-colon represents a null

statement. Either the condition

evaluates to true or false, there is

nothing to do.

The cout doesn’t belong to if

statement. The statement has

already been ended up with semi-

colon previously.

Example:

if (x<3)

cout <<"Yes“ <<endl;

else;

cout <<“No” <<endl;

Let say x=5, Let say x=1,

• Simplifying conditions:

Simplifying if statements

if (a != 0)

statement;

if (a > 0)

statement;

if (a < 0)

statement;

if (a)

statement;

Original statement Simplified statement

if (a == 0)

statement;

if (!a)

statement;

• Example 1 : print a number only if it is an odd number

Simplifying if statements

Original statement Simplified statement

if (n%2==1)

cout << n;

if (n%2)

cout << n;

• Example 2: print a number only if it is an even number

Original statement Simplified statement

if (n%2==0)

cout << n;

if (!(n%2))

cout << n;

• Conditional Expressions:

Simplifying if statements

Syntax:

Simplifying if statements

condition ? value1 : value2

Example:

p = (q<5) ? q + 1 : 5;

if (p<5)

p = q + 1;

else

p = 5;

If the condition is
true, take the value1

•Conditional Expressions:

If the condition is
false, take the value2

This statement

means

• If there are many nested if/else statements, you may be able

to replace them with a switch statement:

if (letter_grade == 'A')

cout << “Excellent!";

else if (letter_grade == 'B')

cout << "Very good!";

else if (letter_grade == 'C')

cout << "Good";

else if (letter_grade == 'D')

cout << "Adequate";

else

cout << "Fail";

switch (letter_grade)

{

case 'A‘ : cout <<"Excellent!";

break;

case 'B' : cout <<“Very good!";

break;

case 'C' : cout <<"Good";

break;

case 'D' : cout <<"Adequate";

break;

default : cout <<"Fail";

break;

}

switch statement

switch (expression)

{

case value1: statements_1;

break;

case value2 : statements_2;

break;

...

default : statements;

break;

}

How the switch statement works?

1. Check the value of expression.

2. Is it equal to value1?

– If yes, execute the

statements_1 and break out

of the switch.

– If no, is it equal to value2?

etc.

3. If it is not equal to any values of

the above, execute the default

statements and then break out of

the switch.

switch statement

int value = 1;

switch (value)

{

case 1: cout << “One”;

break;

case 2: cout << “Two”;

break;

default : cout << “Neither One nor Two”;

break;

}

switch statement

evaluates to 1

it is equal to this

case-value (i.e.

1==1). So,

execute the

statements of

‘case 1’.

Prints One

break out of the switch

Example 1:

int value = 1;

switch (value + 1)

{

case 1: cout << “One”;

break;

case 2: cout << “Two”;

break;

default : cout << “Neither One nor Two”;

break;

}

switch statement

this expression

evaluates to 2

it is not equal to

this case-value (i.e.

2!=1). So, skip the

statements of ‘case

1’ and move to the

next case.

Prints Two

break out of the switch
it is equal to this

case-value (i.e.

2==2). So,

execute the

statements of

‘case 2‘.

Example 2:

int value = 5;

switch (value)

{

case 1: cout << “One”;

break;

case 2: cout << “Two”;

break;

default : cout << “Neither One nor Two”;

break;

}

switch statement

evaluates to 5

The switch

expression (i.e. 5)

is not equal to

both cases (i.e

5!=1 and 5!=2).

So, their

statements are

skipped.

Prints Neither

One nor Twobreak out of the switch

When the ‘default

case’ is reached,

its statements are

always executed.

Example 3:

int value = 1;

switch (value)

{

case 1: cout << “One\n”;

case 2: cout << “Two\n”;

break;

default : cout << “Neither One nor Two\n”;

break;

}

switch statement

evaluates to 1

it is equal to this

case-value (i.e.

1==1). So,

execute the

statements of the

‘case 1’.

Prints One

break out of the switch

What if the break

statement is not

written?

No break statement here. So,

no break out and move to the

next line.

Prints Two

switch statement

• The switch expression must be of integral type (i.e. int,char,bool).

• The following examples would be an error

void main()

{

float point=4.0;

int mark;

switch (point)

{

case 4 : mark = 100;

break;

case 3.7 : mark = 80;

break;

default : mark = 0;

break;

}

}

Error! The switch

expression cannot
be a float value

void main()

{

char name[]="Ali";

int mark;

switch (name)

{

case "Ali" : mark=95;

break;

case "Aminah": mark=90;

break;

default : mark=50;

break;

}

}

Error! The switch

expression cannot
be a string value

switch statement
• The case-value must be a constant (literal, memory or defined constant)

• The following example would be an error

void main()

{

#define DEFINE 1

const int const2=2;

int var3 = 3;

int value;

switch (value)

{ case 0 : cout << "Four";

break;

case DEFINE : cout << "One";

break;

case const2 : cout << "Two";

break;

case var3 : cout << "Three";

break;

}

}

a literal is OK

a defined

constant is OK

a memory

constant is OK

Error! case-value

cannot be a variable

Pattern 1

if (condition)

{

statement;

}

Translating flowchart to C++ code

condition

statment

True

False

This must be a True

Example 1: Printing a number only if it is a negative

if (n<0)

{

cout << n;

}

Translating flowchart to C++ code

n<0

True

Falseprint

n

Pattern 2

if (condition)

{

statement_1;

}

else

{

statement_2;

}

Translating flowchart to C++ code

condition

statment_2

False

statment_1True

Example 2: If two numbers (p and q) are equivalent reset them to zero,
otherwise exchange or swap their value each other and then print the
new values.

if (p==q)

{

p = 0;

q = 0;

}

else

{

exchange(&p,&q);

cout << p << q;

}

Translating flowchart to C++ code

p == q

False

True

exchange(p,q)

p = 0

print

p, q

q = 0

Pattern 3
if (condition_1)

{

statement_1;

}

else if (condition_2)

{

statement_2;

}

else if (condition_n)

{

statement_n;

}

else

{

statement_m;

}

Translating flowchart to C++ code

condition_1

statment_m

False

statment_1True

condition_2 statment_2True

condition_n

False

statment_nTrue

Example 3: Identifying the grade of a score

if (score > 90)

{

grade = 'A';

}

else if (score > 75)

{

grade = 'B';

}

else if (score > 60)

{

grade = 'C';

}

else if (score > 50)

{

grade = 'D';

}

else

{

grade = 'F';

}

Translating flowchart to C++ code

score>90

grade = 'F'

False

grade = 'A'True

score>75 grade = 'B'True

score>50

False

grade = 'D'True

False

score>60 grade = 'C'True

False

Pattern 4
• The conditions must be in this form:

expression == value
switch (expr)

{

case val_1 : statement_1;

break;

case val_2 : statement_2;

break;

case val_n : statement_n;

break;

default: statement_m;

break;

}

Translating flowchart to C++ code

expr==val_1

statment_m

False

statment_1True

expr==val_2 statment_2True

expr==val_n

False

statment_nTrue

Example 4: Printing the description of a grade.

switch (grade)

{

case 'A‘ : cout << "Excellent!";

break;

case 'B' : cout << "Very good!";

break;

case 'C' : cout << "Good";

break;

case 'D' : cout << "Adequate";

break;

default : cout << "Fail";

break;

}

Translating flowchart to C++ code

grade=='B'

grade=='A'

False

True

True

grade=='D'

False

True

False

grade=='C' True

False

Print

"Excellent"

Print

"Very Good

Print

"Good"

Print

"Adequate"

Print

"Fail"

