
02: Elementary Programming

Programming Technique I

(SCSJ1013)

What a Is a Program Made Of?

• Common elements in programming languages:

– Key Words

– Programmer-Defined Identifiers

– Operators

– Punctuation

– Syntax

Key Words

• Also known as reserved words

• Have a special meaning in C++

• Can not be used for another purpose

• Written using lowercase letters

• Examples in program (shown in green):
using namespace std;

int main()

1-3

Example Program

#include <iostream>

using namespace std;

int main()

{

double num1 = 5,

num2, sum;

num2 = 12;

sum = num1 + num2;

cout << "The sum is " << sum;

return 0;

}
1-4

Operators

• Used to perform operations on data

• Many types of operators

– Arithmetic: +, -, *, /

– Assignment: =

• Examples in program (shown in green):
num2 = 12;

sum = num1 + num2;

1-5

Example Program

#include <iostream>

using namespace std;

int main()

{

double num1 = 5, num2, sum;

num2 = 12;

sum = num1 + num2;

cout << "The sum is " << sum;

return 0;

}

1-6

Punctuation

• Characters that mark the end of a statement,
or that separate items in a list

• Example in program (shown in green):
double num1 = 5,

num2, sum;

num2 = 12;

1-7

Example Program

#include <iostream>

using namespace std;

int main()

{

double num1 = 5,

num2, sum;

num2 = 12;

sum = num1 + num2;

cout << "The sum is " << sum;

return 0;

}
1-8

The #include Directive

• Inserts the contents of another file into the
program

• Is a preprocessor directive
– Not part of the C++ language
– Not seen by compiler

• Example:

#include <iostream>

2-9

No ; goes
here

Comments

• Are used to document parts of a program

• Are written for persons reading the source
code of the program

– Indicate the purpose of the program

– Describe the use of variables

– Explain complex sections of code

• Are ignored by the compiler

2-10

Single-Line Comments

• Begin with // through to the end of line

int length = 12; // length in inches

int width = 15; // width in inches

int area; // calculated area

// Calculate rectangle area

area = length * width;

2-11

Multi-Line Comments

• Begin with /* and end with */

• Can span multiple lines

/*----------------------------

Here's a multi-line comment

----------------------------*/

• Can also be used as single-line comments
int area; /* Calculated area */

2-12

The Parts of a C++ Program

2-13

Statement Purpose

// sample C++ program comment

#include <iostream> preprocessor directive

using namespace std; which namespace to use

int main() beginning of function named main

{ beginning of block for main

cout << "Hello, there!"; output statement

return 0; send 0 back to the operating system

} end of block for main

Special Characters

2-14

Character Name Description

// Double Slash Begins a comment

Pound Sign Begins preprocessor directive

< > Open, Close Brackets Encloses filename used in
#include directive

() Open, Close Parentheses Used when naming function

{ } Open, Close Braces Encloses a group of statements

" " Open, Close Quote Marks Encloses string of characters

; Semicolon Ends a programming statement

Important Details

• C++ is case-sensitive. Uppercase and
lowercase characters are different characters.
‘Main’ is not the same as ‘main’.

• Every {must have a corresponding }, and

vice-versa.

2-15

Variables

Variables

• A variable is a named location in computer
memory (in RAM)

• It holds a piece of data

• It must be defined before it can be used

• Example variable definition:

double num1;

1-17

Example Program

#include <iostream>

using namespace std;

int main()

{

double num1 = 5,

num2, sum;

num2 = 12;

sum = num1 + num2;

cout << "The sum is " << sum;

return 0;

}
1-18

Variables, Constants, and the
Assignment Statement

• Variable

– Has a name and a type of data it can hold

char letter;

– Is used to reference a location in memory where a value
can be stored

– Must be defined before it can be used

– The value that is stored can be changed, i.e., it can “vary”

2-19

variable
namedata type

Variables

– If a new value is stored in the variable, it replaces
the previous value

– The previous value is overwritten and can no
longer be retrieved

int age;

age = 17; // age is 17

cout << age; // Displays 17

age = 18; // Now age is 18

cout << age; // Displays 18

2-20

Variables: Example

Identifiers

Identifiers

• Programmer-chosen names to represent parts of the
program, such as variables

• Name should indicate the use of the identifier

• Cannot use C++ key words as identifiers

• Must begin with alphabetic character or _, followed by
alphabetic, numeric, or _ . Alpha may be uppercase or
lowercase

• Example in program (shown in green):

double num1

Example Program

#include <iostream>

using namespace std;

int main()

{

double num1 = 5,

num2, sum;

num2 = 12;

sum = num1 + num2;

cout << "The sum is " << sum;

return 0;

}
1-24

Valid and Invalid Identifiers

2-25

IDENTIFIER VALID? REASON IF INVALID

totalSales

total_Sales

total.Sales

4thQtrSales

totalSale$

Lines vs. Statements

In a source file,

A line is all of the characters entered before a
carriage return.

Blank lines improve the readability of a program.

Here are four sample lines. Line 3 is blank:

double num1 = 5, num2, sum;

num2 = 12;

sum = num1 + num2;

1-26

Lines vs. Statements

In a source file,

A statement is an instruction to the computer to
perform an action.

A statement may contain keywords, operators,
programmer-defined identifiers, and punctuation.

A statement may fit on one line, or it may occupy
multiple lines.

Here is a single statement that uses two lines:
double num1 = 5,

num2, sum;

1-27

Literals

• Literal: a value that is written into a program’s
code.

– "hello, there" (string literal)

– 12 (integer literal)

Literals: Example

Literals: Example

In-Class Exercise
Examine the following program. List all the variables and literals

that appear in the program.
#include <iostream>

using namespace std;

int main()

{ int little;

int big;

little = 2;

big = 2000;

cout<<"The little number is " <<little<<endl;

cout<<"The big number is "<<big<<endl;

return 0;

}

In-Class Exercise
What will the following program display on the
screen?
#include <iostream>

using namespace std;

int main()

{

int num;

num = 712;

cout<< "The value is " << num << endl;

return 0;

}

Input and Output

Input using cin

The cin Object

• Standard input object

• Like cout, requires iostream file

• Used to read input from keyboard

• Information retrieved from cin with >>

• Input is stored in one or more variables

The cin Object

• cin converts data to the type that matches
the variable:

int height;

cout << "How tall is the room? ";

cin >> height;

The cin Object

• Can be used to input more than one value:
cin >> height >> width;

• Multiple values from keyboard must be separated
by spaces

• Order is important: first value entered goes to first
variable, etc.

Displaying a Prompt

• A prompt is a message that instructs the user
to enter data.

• You should always use cout to display a
prompt before each cin statement.

cout << "How high is the room? ";

cin >> height;

Reading Strings with cin

• Can be used to read in a string

• Must first declare an array to hold characters in
string:

char myName[21];

• myName is a name of an array, 21 is the number of
characters that can be stored (the size of the array),
including the NULL character at the end

• Can be used with cin to assign a value:
cin >> myName;

In-Class Exercise

• Solve the problem. Add array of characters to the
output.

Sample of output:
Enter an integer: 7
Enter a decimal number : 2.25
Enter a single character : R
Enter an array of characters: Programming

Output using cout

The cout Object

• Displays information on computer screen

• Use << to send information to cout
cout << "Hello, there!";

• Can use << to send multiple items to cout
cout << "Hello, " << "there!";

Or
cout << "Hello, ";

cout << "there!";

2-45

Starting a New Line

• To get multiple lines of output on screen

- Use endl

cout << "Hello, there!" << endl;

- Use \n in an output string

cout << "Hello, there!\n";

Notice that the \n is INSIDE

the string.

In-Class Exercise
• Rearrange the following program statements

in the correct order.
int main()

}

return 0;

#include <iostream>

cout<<"In 1492 Columbus sailed the ocean

blue.";

{

using namespace std;

• What is the output of the program when it is properly

arranged?

Data type and constant

Number Systems

• Numbers can be represented in a variety of
ways.

• The representation depends on what is called
the BASE.

• You write these numbers as:

– Number base

Number Systems

• The following are the four most common
representations.

• Decimal (base 10)

– Commonly used

– Valid digits are from 0 to 9

– Example: 12610 (normally written as just 126)

• Binary (base 2)

– Valid digits are 0 and 1

– Example: 11111102

• The following are the four most common
representations.

• Octal (base 8)

– Valid digits are from 0 to 7

– Example: 1768

• Hexadecimal (base 16)

– Valid digits are from 0 to 9 and A to F (or from a to f)

– Example: 7E16

Integer Data Types

• Designed to hold whole numbers

• Can be signed or unsigned

12 -6 +3

• Available in different sizes (i.e., number of
bytes): short, int, and long

• Size of short size of int size of long

2-52

Integral Constants

• To store an integer constant in a long memory
location, put ‘L’ at the end of the number:
1234L

• Constants that begin with ‘0’ (zero) are octal,
or base 8: 075

• Constants that begin with ‘0x’ are
hexadecimal, or base 16: 0x75A

2-53

Defining Variables

• Variables of the same type can be defined

- In separate statements

int length;

int width;

- In the same statement

int length,

width;

• Variables of different types must be defined in
separate statements

2-54

Floating-Point Data Types

• Designed to hold real numbers
12.45 -3.8

• Stored in a form similar to scientific notation

• Numbers are all signed

• 3 data types to represent floating-point
numbers: float, double, and long
double

• Size of float size of double
 size of long double

2-55

Floating-point Constants

• Can be represented in

- Fixed point (decimal) notation:

31.4159 0.0000625

- E notation:

3.14159E1 6.25e-5

• Are double by default

• Can be forced to be float 3.14159F or long
double 0.0000625L

2-56

Assigning Floating-point Values to
Integer Variables

If a floating-point value is assigned to an
integer variable

– The fractional part will be truncated (i.e.,
“chopped off” and discarded)

– The value is not rounded

int rainfall = 3.88;

cout << rainfall; // Displays 3

2-57

The bool Data Type

• Represents values that are true or false

• bool values are stored as short integers

• false is represented by 0, true by 1

bool allDone = true;

bool finished = false;

2-58

allDone finished

1 0

The char Data Type

• Used to hold single characters or very small
integer values

• Usually occupies 1 byte of memory

• A numeric code representing the character is
stored in memory

2-59

SOURCE CODE MEMORY

char letter = 'C'; letter

67

The char Data Type

• Used to hold single characters or very small
integer values

• Usually occupies 1 byte of memory

• A numeric code representing the character is
stored in memory

2-60

SOURCE CODE MEMORY

char letter = 'C'; letter

67

In-Class Exercise

• What is wrong with the following program?
#include <iostream>

using namespace std;

int main()

{ char letter;

letter = "Z";

cout<<letter<<endl;

return 0;

}

Summary of data types
Name Description Size Range

char Character or small integer. 1byte
signed: -128 to 127
unsigned: 0 to 255

short int
(short)

Short Integer. 2bytes
signed: -32768 to 32767
unsigned: 0 to 65535

int Integer. 4bytes
signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

long int
(long)

Long integer. 4bytes
signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

bool
Boolean value. It can take
one of two values: true or
false.

1byte true or false

float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)

double
Double precision floating
point number.

8bytes +/- 1.7e +/- 308 (~15 digits)

long double
Long double precision
floating point number.

8bytes +/- 1.7e +/- 308 (~15 digits)

Naming Constant

Named Constants

• Named constant (constant variable): variable
whose content cannot be changed during
program execution

• Used for representing constant values with
descriptive names:
const double TAX_RATE = 0.0675;

const int NUM_STATES = 50;

• Often named in uppercase letters

Defining constants
• You can define your own names for constants that you use very

often without having to resort to memory-consuming variables,
simply by using the #define preprocessor directive.

• Its format:
#define identifier value

• Example:

#include <iostream>

using namespace std;

#define PI 3.14159

#define NEWLINE '\n‘

int main ()

{ double r=5.0;

double circle;

circle = 2 * PI * r;

cout << circle;

cout << NEWLINE; return 0;}

Declared constants (const)
• With the const prefix you can declare constants with a

specific type in the same way as you would do with a

variable

• Example:

#include <iostream>

using namespace std;

int main ()

{ double r=5.0,circle;

const double PI = 3.14159;

const char NEWLINE = '\n';

circle = 2 * PI * r;

cout << circle;

cout << NEWLINE; return 0;}

String Constant

• Can be stored a series of characters in
consecutive memory locations

"Hello"

• Stored with the null terminator, \0, at end

• Is comprised of characters between the " "

2-67

H e l l o \0

A character or a string constant?

• A character constant is a single character,
enclosed in single quotes:

'C'

• A string constant is a sequence of characters
enclosed in double quotes:

"Hello, there!"

• A single character in double quotes is a string
constant, not a character constant:

"C"

2-68

The C++ string Class

• Must #include <string> to create and use
string objects

• Can define string variables in programs
string name;

• Can assign values to string variables with the
assignment operator

name = "George";

• Can display them with cout
cout << name;

2-69

Determining the Size of a Data
Type

The sizeof operator gives the size of any data
type or variable

double amount;

cout << "A float is stored in "

<< sizeof(float) << " bytes\n";

cout << "Variable amount is stored in

"

<< sizeof(amount) << " bytes\n";

2-70

More on Variable Assignments and
Initialization

• Assigning a value to a variable

– Assigns a value to a previously created variable

– A single variable name must appear on left side of
the = symbol

int size;

size = 5; // legal

5 = size; // not legal

2-71

Variable Assignment vs.
Initialization

• Initializing a variable

– Gives an initial value to a variable at the time it is
created

– Can initialize some or all variables of definition

int length = 12;

int width = 7, height = 5, area;

2-72

Scope

• The scope of a variable is that part of the program
where the variable may be used

• A variable cannot be used before it is defined

int a;

cin >> a; // legal

cin >> b; // illegal

int b;

2-73

In-Class Exercise

• Trace the following program. Can it be
compiled?

#include <iostream>

using namespace std;

int main()

{

cout<<value;

int value;

return 0;

}

Arithmetic Expression

Arithmetic Operators and
Expression

Arithmetic Operators

• Used for performing numeric calculations

• C++ has unary, binary, and ternary operators

– unary (1 operand) -5

– binary (2 operands) 13 - 7

– ternary (3 operands) exp1 ? exp2 : exp3

2-77

Binary Arithmetic Operators

2-78

SYMBOL OPERATION EXAMPLE ans

+ addition ans = 7 + 3; 10

- subtraction ans = 7 - 3; 4

* multiplication ans = 7 * 3; 21

/ division ans = 7 / 3; 2

% modulus ans = 7 % 3; 1

/ Operator

• C++ division operator (/)performs integer
division if both operands are integers
cout << 13 / 5; // displays 2

cout << 2 / 4; // displays 0

• If either operand is floating-point, the result is
floating-point
cout << 13 / 5.0; // displays 2.6

cout << 2.0 / 4; // displays 0.5

2-79

% Operator

• C++ modulus operator (%) computes the
remainder resulting from integer division

cout << 9 % 2; // displays 1

• % requires integers for both operands

cout << 9 % 2.0; // error

2-80

In-Class Exercise
• Identify as many syntax errors as you can in the

following program
/ what is wrong with this program?/

#include iostream

using namespace std;

int main();

}

int a, b, c

a=3

b=4

c=a+b

Cout<"The value of c is "<C;

return 0;

{

Order of Operations

In an expression with more than one
operator, evaluation is in this order:

()

- (unary negation), in order, right to left

* / %, in order, left to right

+ -, in order, left to right

In the expression 2 + 2 * 2 – 2

evaluate
first

evaluate
second

evaluate
third

Example

int z, y=-5;

z= 8 - 3 + 9 / 2 + 2 * - y;

z= 8 - (3 + 9 / 2) + 2 * - y;// try this

 8 - 3 + 9 / 2 + 2 * - y

1: - 5

3: * 10

2: / 44: - 5

5: +

6: +

9

19

Order of Operations

Show prove for the following expression

Associativity of Operators

• - (unary negation) associates right to left

• *, /, %, +, - associate left to right

• parentheses () can be used to override the
order of operations:
2 + 2 * 2 – 2 = 4

(2 + 2) * 2 – 2 = 6

2 + 2 * (2 – 2) = 2

(2 + 2) * (2 – 2) = 0

Grouping with Parentheses

Type Conversion

When You Mix Apples and
Oranges: Type Conversion

• Operations are performed between operands
of the same type.

• If not of the same type, C++ will convert one to
be the type of the other

• This can impact the results of calculations.

Type Conversion

• Type Conversion: automatic conversion of an
operand to another data type

• Promotion: convert to a higher type

• Demotion: convert to a lower type

Hierarchy of Types

Highest:

Lowest:

Ranked by largest number they can hold

long double

double

float

unsigned long

long

unsigned int

int

Conversion Rules

1) char, short, unsigned short automatically
promoted to int

– For arithmetic operation

char c=‘A’; cout<<6+c; // int

2) When operating on values of different data types, the lower
one is promoted to the type of the higher one.

int i=25; cout<<6.1+i; // float

3) When using the = operator, the type of expression on right
will be converted to type of variable on left

int x, y =25; float z=2.5;

x=y+z; //int

Algebraic Expressions

• Multiplication requires an operator:

Area=lw is written as Area = l * w;

• There is no exponentiation operator:

Area=s2 is written as Area = pow(s, 2);

• Parentheses may be needed to maintain order
of operations:

is written as

m = (y2-y1) /(x2-x1);12

12

xx

yy
m

Algebraic Expressions

Postfix expression

Prefix expression

In-Class Exercise

• What would be the value of nilai_kedua:

int kira = 5;

int nilai_pertama = 10, nilai_kedua;

nilai_kedua= 5* kira-- + nilai_pertama;

nilai_kedua = 5* --kira +nilai+pertama;

Overflow and Underflow

Overflow and Underflow

• Occurs when assigning a value that is too large
(overflow) or too small (underflow) to be held
in a variable

• Variable contains value that is ‘wrapped
around’ set of possible values

• Different systems may display a warning/error
message, stop the program, or continue
execution using the incorrect value

Type Casting

Type Casting

• Used for manual data type conversion
• Useful for floating point division using int:

double m;
m = static_cast<double>(y2-y1)

/(x2-x1);

• Useful to see int value of a char variable:
char ch = 'C';

cout << ch << " is "

<< static_cast<int>(ch);

Example

C-Style and Prestandard Type Cast
Expressions

• C-Style cast: data type name in ()

cout << ch << " is " << (int)ch;

• Prestandard C++ cast: value in ()

cout << ch << " is " << int(ch);

• Both are still supported in C++, although
static_cast is preferred

Multiple Assignment and Combined
Assignment

Multiple Assignment and
Combined Assignment

• The = can be used to assign a value to
multiple variables:
x = y = z = 5;

• Value of = is the value that is assigned

• Associates right to left:

x = (y = (z = 5));

value
is 5

value
is 5

value
is 5

Combined Assignment

• Look at the following statement:

sum = sum + 1;

This adds 1 to the variable sum.

Combined Assignment

• The combined assignment operators provide
a shorthand for these types of statements.

• The statement

sum = sum + 1;

is equivalent to

sum += 1;

Combined Assignment Operators
Operator Example Equivalent to

+= i+=3
i += j +3

i = i+3
i = i + (j+3)

-= i-=3
i -= j +3

i = i-3
i = i - (j+3)

= i=3
i *= j +3

i = i*3
i = i * (j+3)

/= i/=3
i /= j +3

i = i/3
i = i / (j+3)

%= i%=3
i %= j +3

i = i%3
i = i % (j+3)

In-Class Exercise

Assume that int a = 1 and double d = 1.0, and that
each expression is independent. What are the results
of the following expressions?

i) a = 46/9;

ii) a = 46 % 9 + 4 * 4 – 2;

iii) a = 45 + 43 % 5 * (23 * 3 % 2);

iv) a %=3 / a + 3;

v) d += 1.5 * 3 + (++a);

vi) d -= 1.5 * 3 + a++;

