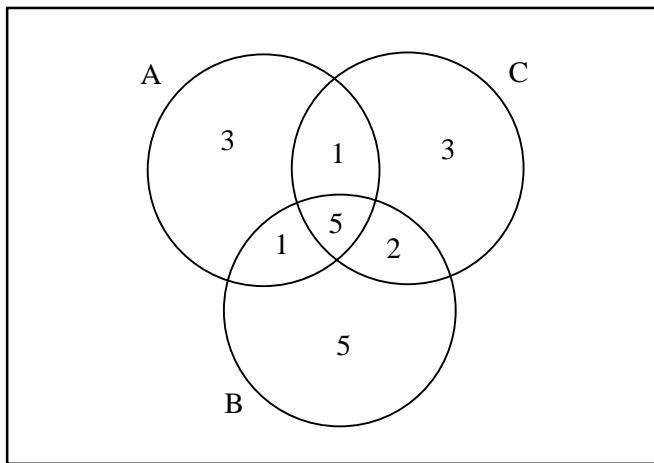


DISCRETE STRUCTURE (SECI1013) – SECTION 7
2019/2020 SEMESTER 1

TUTORIAL 1.1

LECTURER: DR. RAZANA BINTI ALWEE


NO.	GROUP MEMBERS	MATRIC NO.
1.	MUHAMMAD FAHMI BIN MOHD NURJI	A19EC0302
2.	ROSHANDEV DANIEL A/L SUKHDEV SINGH	A19EC0156
3.	PG. KHAIRIL QAYYIZ BIN PG. PUTRA	A19EC0147

ANSWER

1. a) $B = \{-5, -4, -3, -2, -1, 1, 2, 3, 4, 5\}$

b) $C = \left\{ \frac{2}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{10}{3}, 4, \frac{14}{3}, \frac{16}{3}, 6, \frac{20}{3}, \frac{22}{3}, 8, \frac{26}{3}, \frac{28}{3}, 10, \frac{32}{3}, \frac{34}{3}, 12, \frac{38}{3}, \frac{40}{3}, 14, \frac{44}{3}, \frac{46}{3}, 16, \frac{50}{3}, \frac{52}{3}, 18, \frac{56}{3}, \frac{58}{3}, 20, \frac{62}{3}, \frac{64}{3}, 22, \frac{68}{3}, \frac{70}{3}, 24, \frac{74}{3}, \frac{76}{3}, 26, \frac{80}{3}, \frac{82}{3}, 28, \frac{86}{3}, \frac{88}{3}, 30, \frac{92}{3}, \frac{94}{3}, 32, \frac{98}{3}, \frac{100}{3} \right\}$

2.

$A = \text{Cats}$
 $B = \text{Rabbits}$
 $C = \text{Hamsters}$

People that own two types of pets:

$$20 - 5 - 3 - 5 - 3 = 4 \text{ people}$$

$$\therefore \text{Total pets: } (5 \times 3) + 3 + 5 + 3 + (4 \times 2) = 34 \text{ pets}$$

3. $(A \cap B) \cup (A' \cup B)' \quad \text{De Morgan's laws}$

$$= (A \cap B) \cup ((A')' \cup B')' \quad \text{Double complement laws}$$

$$= (A \cap B) \cup (A \cup B') \quad \text{Distributive laws}$$

$$= (A \cup A) \cap (B \cup B') \quad \text{Idempotent laws}$$

$$= A \cap (B \cup B') \quad \text{Complement laws}$$

$$= A \cap U \quad \text{Properties of universal set}$$

$$= A$$

4. $a = 2n + 1$
 $b = 2n + 1$
 $a \times b = (2n + 1)(2n + 1)$
 $a \times b = (2n + 1)^2$
 $a \times b = 4n^2 + 4n + 1$
 $a \times b = 2(2n^2 + 2n) + 1$
 $a \times b = 2m + 1$ where $m = 2n^2 + 2n$
 $\therefore a \times b$ is an odd integer

Prove:

$$\begin{array}{lll} a = 2n + 1 & b = 2n + 1 & a \times b \\ a = 2(3) + 1 & b = 2(5) + 1 & = 7 \times 11 \\ a = 7 & b = 11 & = 77 \end{array}$$

5. $p = \text{I shop online}$
 $q = \text{I purchase goods}$
 $r = \text{I receive my allowance}$

a) $r \rightarrow q \wedge \neg p$
b) $r \wedge \neg q \vee \neg p$

6. a) The domain of x is all students at your college.
Let $M(x) = x$ is all students attend class on Monday,
 $N(x) = x$ attend class in the morning

$$\therefore \forall x (M(x) \rightarrow N(x))$$

b) The domain of x is all integer
 $x^2 + 2x - 3 = 0$
 $(x + 3)(x - 1) = 0$
 $x = -3$ or $x = 1$

If $P(x)$ is predicate $x^2 + 2x - 3 = 0$, the $\exists x P(x)$ is true since $P(1)$ and $P(-3)$ are true.

$$\therefore \exists x P(x)$$

c) The domain of x is all flowers

Let $G(x) = x$ is all red flowers,

$H(x) = x$ is edible

$\therefore \exists x (G(x) \wedge H(x))$