08: STRUCTURED DATA

Programming Technique |
(SCSJ1013)

IIIIIIIIIIIIIIIIIIIIIIII

Abstract Data Types

Abstract Data Types

A data type that specifies:

¢ values that can be stored
¢ operations that can be done on the values

User of an abstract data type does not need to know the
implementation of the data type, e.g., how the data is stored

ADTs are created by programmers

innovative e entrepreneurial e global www.utm.my

Abstraction and Data Types

Abstraction: a definition that captures general
characteristics without details.

¢ Ex: An abstract triangle is a 3-sided polygon. A specific triangle may
be scalene, isosceles, or equilateral

Data Type: defines the values that can be stored in a variable
and the operations that can be performed on it

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIII

Combining Data into Structures

Introduction to Structures

Structure: C++ construct that allows multiple variables to be
grouped together.

General format:
struct <structName>
{
typel fieldl;
type2 field2;

};

innovative e entrepreneurial e global www.utm.my

UNIVERSITI TEKNOLOGI MALAYSIA

Example: struct Declaration

struct Student Structure tag
{

int studentlID;
string name; Structure

short yearInSchool;
double gpa;

members

innovative e entrepreneurial e global www.utm.my

struct Declaration Notes

Must have ; after closing }.

struct names commonly begin with uppercase letter.

Multiple fields of same type can be in comma-separated list:

string name, address;

struct declaration does not allocate memory or create
variables.

To define variables, use structure tag as type name:
Student bill;

innovative e entrepreneurial e global www.utm.my

Defining Variables

struct declaration does not allocate memory or create
variables

To define variables, use structure tag as type name:
Student bill;

& bill A
studentID
name
yearInSchool
gpa
(U J

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIII

Accessing Structure Members

Accessing Structure Members

Use the dot (.) operator to refer to members of struct
variables:
cin >> stul.studentID;
getline (cin, stul.name);

stul.gpa = 3.75;

General Format: Member variables can be used in any
manner appropriate for their data type

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Accessing Structure Members

Program 11-1

// This program demonstrates the use of structures.
$include <iostream>

$include <string>

$include <iomanip>

using namespace std;

struct PayRoll

{
int empNumber; // Employee number
string name; // Employee's name
double hours; // Hours worked
double payRate; // Hourly payRate
double grossPay; // Gross pay

bi

int main()

{
PayRoll employee; // employee is a PayRoll structure.

// Get the employee's number.
cout << "Enter the employee's number: ";
cin >> employee.empNumber;

// Get the employee's name.
cout << "Enter the employee's name: ";

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

cin.ignore(); // To ékib the remaining '\n' character
getline(cin, employee.name);

// Get the hours worked by the employee.
cout << "How many hours did the employee work? ";
cin >> employee.hours;

// Get the employee's hourly pay rate.
cout << "What is the employee's hourly payRate? ";
cin >> employee.payRate;

// Calculate the employee's gross pay.
employee.grossPay = employee.hours * employee.payRate;

// Display the employee data.
cout << "Here is the employee's payroll data:\n";
cout << "Name: " << employee.name << endl;

cout << "Number: " << employee.empNumber << endl;
cout << "Hours worked: " << employee.hours << endl;
cout << "Hourly payRate: " << employee.payRate << endl;

cout << fixed << showpoint << setprecision(2);
cout << "Gross Pay: $" << employee.grossPay << endl;
return 0;

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Program Output with Example Input Shown in Bold

Enter the employee's number: 489 [Enter]

Enter the employee's name: Jill Smith [Enter]

How many hours did the employee work? 40 [Enter]
What is the employee's hourly pay rate? 20 [Enter]
Here is the employee's payroll data:

Name: Jill Smith

Number: 489

Hours worked: 40

Hourly pay rate: 20

Gross pay: $800.00

innovative e entrepreneurial e global www.utm.my

Displaying a struct Variable

To display the contents of a st ruct variable, must display
each field separately, using the dot operator:

cout bill; // won’t work
cout bill.studentID << endl;
cout bill.name << endl;

cout bill.yearInSchool;

cout " " <K< bill.gpa;

innovative e entrepreneurial e global

Comparing struct Variables

& Cannot compare struct variables directly:
1f (bi1ill == william)

// won’t work

Instead, must compare on a field basis:
1f (bill.studentID ==
william.studentID)

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIII

Initializing a Structure

Initializing a Structure

& struct variable can be initialized when
defined:

Student s = {11465, "Joan", 2, 3.75};

& Can also be initialized member-by-member
after definition:

s.name = "Joan";

s.gpa = 3.75;

innovative e entrepreneurial e global www.utm.my

More on Initializing a Structure

May initialize only some members:
Student bill = {14579};

Cannot skip over members:
Student s = {1234, "John", ,
2.83}; // illegal

Cannot initialize in the structure declaration, since this does
not allocate memory

innovative e entrepreneurial e global www.utm.my

From Program 11-3

struct EmployeePay

{
string name; // Employee name
int empNum; // Employee number
double payRate; // Hourly pay rate
double hours; // Hours worked
double grossPay; // Gross pay

bi

EmployeePay employeel = {"Betty Ross", 141, 18.75};
EmployeePay employee2 = {"Jill Sandburg", 142, 17.50};

innovative e entrepreneurial e global www.utm.my

........................ Exercise

** Write a complete program to:

— Initialize structure variables radius and
rumbia to the value listed in Table 8.1.

— Display all the values in both variables to
screen

www.utm.my

Array of Structures

Arrays of Structures

Structures can be defined in arrays

Can be used in place of parallel arrays
const int NUM STUDENTS = 20;
Student stulist [NUM STUDENTS] ;

Individual structures accessible using subscript notation

Fields within structures accessible using dot notation:
cout << stulList[5].studentlID;

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Arrays of Structures-Example

Program 11-4

// This program uses an array of structures.
#include <iostream>

$include <iomanip>

using namespace std;

struct PayInfo

{
int hours; // Hours worked
double payRate; // Hourly pay rate

}i

int main()

{
const int NUM WORKERS = 3; // Number of workers
PayInfo workers[NUM WORKERS]; // Array of structures
int index; // Loop counter

innovative e entrepreneurial e global www.utm.my

// Get employee pay data.

cout << "Enter the hours worked by " << NUM WORKERS
<< " employees and thelr hourly rates.\n";

for (index = 0; index < NUM WORKERS; index++)
{
// Get the hours worked by an employee.
cout << "Hours worked by employee #" << (index + 1);
cout << ": "3
cin >> workers[index].hours;

// Get the employee's hourly pay rate.
cout << "Hourly pay rate for employee £";
cout << (index + 1) << ": ";

cin >> workers[index]).payRate;

cout << endl;

}

// Display each employee's gross pay.

cout << "Here 1s the gross pay for each employee:\n";
cout << fixed << showpolint << setprecision(2);

for (index = 0; index < NUM WORKERS; index++)

{
double gross;
gross = workers[index].hours * workers[index].payRate;
cout << "Employee #" << (index + 1);
cout << ": §" << gross << endl;
}
return 0;

}

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Program Output with Example Input Shown in Bold

Enter the hours worked by 3 employees and their hourly rates.
Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #l: 9.75 [Enter]

Hours worked by employee #2: 20 [Enter]
Hourly pay rate for employee #2: 10.00 [Enter]

Hours worked by employee #3: 40 [Enter]
Hourly pay rate for employee #2: 20.00 [Enter]

Here is the gross pay for each employee:
Employee #1: $97.50
Employee #2: $200.00
Employee #3: $800.00

innovative e entrepreneurial e global www.utm.my


~~~~~~~~~~~~~~~~~~~~~~ Exercise 3

** Add the following solution to the program:

— Initialize structure variables kemayan to the
value listed in Table 8.1.

— Display all the values in the variable to screen

www.utm.my



Nested Structures




©®UTM
OLiv Nested Structures

—

A structure can contain another structure as a member:

struct PersonInfo
{ string name,
address,
city;
i
struct Student
{int studentID;
PersonInfo pData;
short yearInSchool;
double gpa;

v e

innovative e entrepreneurial e global www.utm.my



........................... Members of Nested Structures

—

Use the dot operator multiple times to refer to fields of
nested structures:

Student s;

s.pData.name = "Joanne";

s.pData.city "Tulsa";

innovative e entrepreneurial e global www.utm.my



IIIIIIIIIIIIIIIIIIIIIIIII

Structures as Function Arguments




ructures as Function Arguments

May pass members of struct variables to functions:
computeGPA (stu.gpa) ;

May pass entire struct variables to functions:

showData (stu) ;

& Can use reference parameter if function needs to modify
contents of structure variable

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

Excerpts from Program 11-6

struct InventoryItem

{
int partNum; // Part number
string description; // Item description
int onHand; // Units on hand
double price; // Unit price

}i

void showItem(InventoryItem p)

{
cout << fixed << showpoint << setprecision(2);
cout << "Part Number: " << p.partNum << endl;
cout << "Description: " << p.description << endl;
cout << "Units On Hand: " << p.onHand << endl;
cout << "Price: $" << p.price << endl;

}

innovative e entrepreneurial e global www.utm.my




Structures as Function
Arguments - Notes

Using value parameter for structure can slow down a
program, waste space

Using a reference parameter will speed up program, but
function may change data in structure

Using a const reference parameter allows read-only access
to reference parameter, does not waste space, speed up
program

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

Revised showItem Function

void showItem(const Inventoryltem &p)

{
cout << fixed << showpolnt << setprecision(2);
cout << "Part Number: " << p.partNum << endl;
cout << "Description: " << p.description << endl;
cout << "Units On Hand: " << p.onHand << endl;
cout << "Price: §" << p.price << endl;

}

innovative e entrepreneurial e global www.utm.my




IIIIIIIIIIIIIIIIIIIIIIIIII

Returning a Structure from a
Function




Returning a Structure from a
Function

Function can return a struct:

Student getStudentData(); // prototype
stul = getStudentDatal() ; // call

& Function must define a local structure

¢ for internal use
¢ for use with return statement

innovative e entrepreneurial e global



@ UNIVERSITI TEKNOLOGI MALAYSIA

Returning a Structure from a Function

Student getStudentData ()

{ Student tempStu;
cin >> tempStu.studentID;
getline(cin, tempStu.pData.name);
getline(cin, tempStu.pData.address);
getline(cin, tempStu.pData.city);
cin >> tempStu.yearInSchool;
cin >> tempStu.gpa;
return tempStu;

innovative e entrepreneurial e global www.utm.my




@UTM /Returning a Structure from a Function

, Program 11-7

// This program uses a function to return a structure. This
// is a modification of Program 11-2.

#include <iostream>

$include <iomanip>

$#include <cmath> // For the pow function

using namespace std;

// Constant for pi.
const double PI = 3.14159;

// Structure declaration
struct Circle

{
double radius; // A circle's radius
double diameter; // A circle's diameter
double area; // A circle's area

}i

// Function prototype
Circle getInfo();

int main()

{

Circle c; // Define a structure variable

innovative e entrepreneurial e global www.utm.my




@ UNIVERSITI TEKNOLOGI MALAYSIA

// Get data about the circle.
c = getInfo();

// Calculate the circle's area.
c.area = PI * pow(c.radius, 2.0);

// Display the circle data.

cout << "The radius and area of the circle are:\n";
cout << fixed << setprecision(2);

cout << "Radius: " << c.radius << endl;

cout << "Area: " << c.area << endl;

return 0;

innovative e entrepreneurial e global www.utm.my




@ UNIVERSITI TEKNOLOGI MALAYSIA

//***************************************************************

// Definition of function getInfo. This function uses a local

// variable, tempCircle, which is a circle structure. The user *

// enters the diameter of the circle, which is stored in *

// tempCircle.diameter. The function then calculates the radius *

// which is stored in tempCircle.radius. tempCircle is then *
*
*

// returned from the function.
//**************************************************************

Circle getInfo()
{

Circle tempCircle; // Temporary structure variable

// Store circle data in the temporary variable.
cout << "Enter the diameter of a circle: ";

cin >> tempCircle.diameter;

tempCircle.radius = tempCircle.diameter / 2.0;

// Return the temporary variable.
return tempCircle;

Program Output with Example Input Shown in Bold
Enter the diameter of a circle: 10 [Enter]
The radius and area of the circle are:
Radius: 5.00

Area: 78.54

innovative e entrepreneurial e global www.utm.my




IIIIIIIIIIIIIIIIIIIIIIII

Pointer to Structure




Pointers to Structures

A structure variable has an address

Pointers to structures are variables that can hold the address
of a structure:

Student *stuPtr;

Can use & operator to assign address:
stuPtr = & stul;

Structure pointer can be a function parameter

innovative e entrepreneurial e global www.utm.my




Accessing Structure Members
via Pointer Variables

Must use () to dereference pointer variable, not field within
structure:

cout << (*stuPtr).studentID;

Can use structure pointer operator to eliminate () and use
clearer notation:

cout << stuPtr->studentID;

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

From Program 11-8

void getData(Student *s)

{
// Get the student name.

cout << "Student name: ";
getline(cin, s->name);

// Get the student ID number.
cout << "Student ID Number: ";
cin >> s->idNum;

// Get the credit hours enrolled.
cout << "Credit Hours Enrolled: ";
cin >> s->creditHours;

// Get the GPA.

cout << "Current GPA: ";
cin >> s->gpa;

innovative e entrepreneurial e global www.utm.my




UNIVERSITI TEKNOLOGI MALAYSIA

Unions

innovative e entrepreneurial e global www.utm.my




UNIVERSITI TEKNOLOGI MALAYSIA

Unions

Similartoa struct, but

¢ all members share a single memory location, and
¢ only one member of the union can be used at a time

Declared using union, otherwise the same as struct

Variables defined as for st ruct variables

innovative e entrepreneurial e global www.utm.my



Anonymous Union

A union without a union tag:

union { ... };

Must use static if declared outside of a function

Allocates memory at declaration time

Can refer to members directly without dot operator

Uses only one memory location, saves space

innovative e entrepreneurial e global www.utm.my



IIIIIIIIIIIIIIIIIIIIIIII

Enumerated Data Types




Enumerated Data Types

An enumerated data type is a programmer-defined data
type. It consists of values known as enumerators, which
represent integer constants.

Example:
enum Day { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY 1},

The identifiers MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, and FRIDAY, which are listed inside the
braces, are enumerators. They represent the values that
belong to the Day data type.

innovative e entrepreneurial e global www.utm.my



Enumerated Data Types

enum Day { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

Note that the enumerators are not strings, so they aren’t
enclosed in quotes.

They are identifiers.

innovative e entrepreneurial e global



Enumerated Data Types

Once you have created an enumerated data type in your
program, you can define variables of that type. Example:

Day workDay;

This statement defines workDay as a variable of the Day
type.

We may assign any of the enumerators MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, or FRIDAY to a variable of the
Day type. Example:

workDay = WEDNESDAY;

innovative e entrepreneurial e global www.utm.my



Enumerated Data Types

So, what is an enumerator?

& Think of it as an integer named constant

Internally, the compiler assigns integer values to the
enumerators, beginning at 0.

innovative e entrepreneurial e global www.utm.my



@UTM/ Enumerated Data Types

—

enum Day { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,
FRIDAY };

In memory...

MONDAY =0
TUESDAY =1
WEDNESDAY =2
THURSDAY =3
FRIDAY =4

innovative e entrepreneurial e global www.utm.my



‘@- Enumerated Data Types

—

Using the Day declaration, the following code...
cout << MONDAY << " "
<< WEDNESDAY << " “
<< FRIDAY << endl;

will produce this output:

0 2 4

innovative e entrepreneurial e global www.utm.my



Assigning an integer to an
enum Variable

You cannot directly assign an integer value to an enum

variable. This will not work:
workDay = 3; // Error!

& Instead, you must cast the integer:
workDay = static cast<Day>(3);

innovative e entrepreneurial e global



Assigning an Enumerator to
an int Variable

You CAN assign an enumerator to an int variable. For
example:

int x;
x = THURSDAY;

This code assigns 3 to x.

innovative e entrepreneurial e global www.utm.my



Comparing Enumerator
Values

Enumerator values can be compared using the relational
operators. For example, using the Day data type the
following code will display the message "Friday is greater
than Monday.”

if (FRIDAY > MONDAY)
{

cout << "Friday 1s greater "
<< "than Monday.\n";

innovative e entrepreneurial e global www.utm.my



@ UNIVERSITI TEKNOLOGI MALAYSIA

Comparing Enumerator Values -
example

Program 11-12

// This program demonstrates an enumerated data type.
¢include <iostream>

¢include <iomanip>

using namespace std;

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

int main()
{
const int NUM_DAYS = 53 // The number of days
double sales[NUM DAYS]; // To hold sales for each day
double total = 0.0; // Accumulator
int index; // Loop counter

// Get the sales for each day.
for (index = MONDAY; index <= FRIDAY; index++)

{
cout << "Enter the sales for day "
<< index << ": ";
cin >> sales[index];
}

innovative e entrepreneurial e global www.utm.my




@ UNIVERSITI TEKNOLOGI MALAYSIA

Program 11-12 (Continued)

// Calculate the total sales.
for (index = MONDAY; index <= FRIDAY; index++)
total += sales|index];

// Display the total.
cout << "The total sales are $" << setprecision(2)
<< fixed << total << endl;

return 0;

Program Output with Example Input Shown in Bold
Enter the sales for day 0: 1525.00 [Enter]
Enter the sales for day l: 1896.50 [Enter]
Enter the sales for day 2: 1975.63 [Enter]
Enter the sales for day 3: 1678.33 [Enter]
Enter the sales for day 4: 1498.52 [Enter]
The total sales are §8573.98

innovative e entrepreneurial e global www.utm.my




Enumerated Data Types

Program 11-12 shows enumerators used to control a loop:

// Get the sales for each day.
for (1ndex = MONDAY; 1index <= FRIDAY;

index++)
{

"Enter the sales for day "

" [ ) " [ J

<< 1ndex << : ;
cln >> sales|[index];

cout <<

www.utm.my

innovative e entrepreneurial e global



Anonymous Enumerated
Types

An anonymous enumerated type is simply one that does not
have a name. For example, in Program 11-13 we could have
declared the enumerated type as:

enum { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,

FRIDAY };

innovative e entrepreneurial e global



Using Math Operators with
enum Variables

You can run into problems when trying to perform math
operations with enum variables. For example:
Day dayl, day2;
// Define two Day variables.
dayl = TUESDAY;
// Assign TUESDAY to dayl.
day2 = dayl + 1;
// ERROR! Will not work!

The third statement will not work because the expression
dayl + 1 resultsin the integer value 2, and you cannot
store an int in an enum variable

innovative e entrepreneurial e global www.utm.my



Using Math Operators with
enum Variables

You can fix this by using a cast to explicitly convert the result
to Day, as shown here:

// This will work.
day2 = static cast<Day>(dayl + 1);

innovative e entrepreneurial e global www.utm.my



©UIM / Using an enum Variable to Step
2 through an Array's Elements

enum Day { MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY };

const int NUM DAYS = 5;

double sales[NUM DAYS];

sales [MONDAY] = 1525.0;

sales [TUESDAY] = 1896.5;

WEDNESDAY] = 1975.63;

THURSDAY] = 1678.33;

FRIDAY] = 1498.52;

sales

sales

[
[
[
sales |

innovative e entrepreneurial e global www.utm.my



innovative e entrepreneurial e global www.utm.my

~~~~~~~~~~~~~~~~~~~~~~~ Using an enum Variable to Step
through an Array's Elements

Remember, though, you cannot use the ++ operator on an

enum variable. So, the following loop will NOT work.

Day workDay; // Define a Day variable
// ERROR!!! This code will NOT work.

for (workDay = MONDAY,; workDay <= FRIDAY;
workDay++)

cout << "Enter the sales for day "

<< workDay << ": ";

4

cin >> sales[workDay];

© UTM/Usmg an enum Variable to Step
2 through an Array's Elements

for (workDay = MONDAY; workDay <= FRIDAY;
workDay = static cast<Day>(workDay + 1))

cout << "Enter the sales for day "
<< workDay << ": ";

cin >> sales[workDay];

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Using an enum Variable to Step through
an Array's Elements - example

Program 11-13

// This program demonstrates an enumerated data type.

¢include <iostream>
¢include <iomanip>
using namespace std;

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

int main()

{

const int NUM DAYS = 5; // The number of days

double sales[NUM DAYS]; // To hold sales for each day
double total = 0.0; // Accumulator

Day workDay; // Loop counter

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Program 11-13

Using an enum Variable to Step through

an Array's Elements - example

(continued)

// Get the sales for each day.
= MONDAY; workDay <= FRIDAY;

for

}

(workDay

workDay = static cast<Day>(workDay + 1))

cout << "Enter the sales for day "

<< workDay << ": ";

cin >> sales|[workDay];

// Calculate the total sales.

for

(workDay = MONDAY; workDay <= FRIDAY;

workDay = static cast<Day>(workDay + 1))

total += sales|[workDay];

// Display the total.
cout << "The total sales are §" << setprecision(2)
<< fixed << total << endl;

return 0;

}

Program Output with Example Input Shown in Bold

Enter the
Enter the
Enter the
Enter the
Enter the
The total

sales
sales
sales
sales
sales
sales

for
for
for
for
for
are

day
day
day
day
day

$8573.98

0: 1525.00 [Enter]
1: 1896.50 [Enter]
2: 1975.63 [Enter]
3: 1678.33 [Enter]
4: 1498.52 [Enter]

www.utm.my

Enumerators Must Be Unique
Within the same Scope

Enumerators must be unique within the same scope. For

example, an error will result if both of the following
enumerated types are declared within the same scope:

enum Presidents { MCKINLEY, ROOSEVELT, TAFT };

enum VicePresidents { ROOSEVELT, FAIRBANKS,
SHERMAN };

ROOSEVELT Iis declared twice.

innovative e entrepreneurial e global www.utm.my

Using Strongly Typed enums in C++ 11

* InC++ 11, you can use a new type of enum, known as a
strongly typed enum
* Allows you to have multiple enumerators in the same scope

with the same name

enum class Presidents { MCKINLEY, ROOSEVELT, TAFT };
enum class VicePresidents { ROOSEVELT, FAIRBANKS, SHERMAN };

* Prefix the enumerator with the name of the enum, followed

by the : : operator:
Presidents prez = Presidents::ROOSEVELT;
VicePresidents vp = VicePresidents::ROOSEVELT;

e Use a cast operator to retrieve integer value:

int x = static cast<int>(Presidents::ROOSEVELT) ;

innovative e entrepreneurial e global www.utm.my

Declaring the Type and Defining
the Variables in One Statement

You can declare an enumerated data type and define one or

more variables of the type in the same statement. For
example:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

This code declares the Car data type and defines a variable
named

sportsCar.

innovative e entrepreneurial e global

www.utm.my

