07: POINTERS

Programming Technique |
(SCSJ 1013)

IIIIIIIIIIIIIIIIIIIIIIIIII

7”7 Topic Outline

* 1 - Getting the Address of a Variable

« 2 - Pointer Variables

« 3 - The Relationship Between Arrays and Pointers
* 4 - Pointer Arithmetic

S - Initializing Pointers

* 6 - Comparing Pointers

* 7 - Pointers as Function Parameters

* 8 - Dynamic Memory Allocation

* 9 - Returning Pointers from Functions

IIIIIIIIIIIIIIIIIIIIIIII

1- Getting the Address of a Variable

UNIVERSITI TEKNOLOGI MALAYSIA

Addresses and Pointers

S Address:

¢ A uniquely defined memory location which is
assigned to a variable.

¢ Example - a positive integer value

<An analogy with post box>

Post office box number Individual name Contents
78 John Ruiz Catalog

Memory Address |dentifier Contents
66572 X 105

www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

2 Notation for Memory Snapshot

Memory Address Identifier Contents
66572 X 105
Memory Address 66572

\ N

Identifier Contents X 105

innovative e entrepreneurial e global www.utm.my

Getting the Address of a Variable

& Each variable in program is stored at a unique address

Use address operator to get address of a variable:

int num = -99;
cout << num; // prints address

// in hexadecimal

IIIIIIIIIIIIIIIIIIIIIII

7 Example 1.1

#include <iostream>
using namespace std;

int main ()

{
int x=25;
cout<<"The address of x 1s= "<<K&x<<endl;
cout<<"The value 1n x 1s "<< x<<endl;

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

7~ Result of Example 1.1

X |25

The address of x 1is 0x8f05

The value 1n x 1s 25;

www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

7 Exercise 1

* Type & execute the following program
« Check with your friend the address displayed.

#include <iostream>
using namespace std;

int main ()
{
int x=25;
cout<<"The address of x 1s= "<&x<<Lendl;
cout<<"The wvalue 1n x 1s "< x<<endl;

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIII

2 - Pointer Variables

IIIIIIIIIIIIIIIIIIIIIIIIII

7 Pointer Variables

« Pointer variable : Often just called a pointer, it's a
variable that holds an address

« Because a pointer variable holds the address of another
piece of data, it "points" to the data

* Pointer variables are yet another way using a memory
address to work with a piece of data.

« This means you are responsible for finding the address
you want to store in the pointer and correctly using it.

www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

- Pointer Variables (cont.)

» Definition:
int *intptr;
 Read as:
“intptr can hold the address of an int”
» Spacing in definition does not matter:

int * intptr; // same as above

int* intptr; // same as above

IIIIIIIIIIIIIIIIIIIIIIIIII

- Pointer Variables (cont.)

* Assigning an address to a pointer variable:
int *intptr;

intptr = #

 Memory layout: . intptr
o5 0x4a00

address of num: 0x4a00

www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

- Pointer Variables (cont.)

int a, b, *ptr;
ptr = &a;

ptr

or

int a, b, *ptr = &a;

IIIIIIIIIIIIIIIIIIIIIIIIII

7z Pointer Variables

* |nitialize pointer variables with the special
value nullptr.

* |n C++ 11, the nullptr key word was
introduced to represent the address 0.

* Here is an example of how you define a
pointer variable and initialize it with the value
nullptr:

int *ptr = nullptr;

@ UNIVERSITI TEKNOLOGI MALAYSIA

ointer Variable in Program 9-2

Program 9-2
// This program stores the address of a variable in a pointer.
#include <iostream>

using namespace std;

int main()

{
int x = 25; // int variable
int *ptr = nullptr; // Pointer variable, can point to an int
ptr = &x; // Store the address of x in ptr
cout << "The value in x is " << x << endl;
cout << "The address of x is " << ptr << endl;
return 0;
}

Program Output

The value in x is 25
The address of x is 0x7e00

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

2 The Indirection Operator

* The indirection operator (*) dereferences
a pointer.

* |t allows you to access the item that the
pointer points to.

int x = 25;

int *intptr = &x;
cout << *intpzf << endl;

This prints 25.

IIIIIIIIIIIIIIIIIIIIIIIIII

int a =5, b =09, ptr
*ptr = &a >
P / als| blo
b = *ptr; £
X
PEEN

al s b s

IIIIIIIIIIIIIIIIIIIIIIIIII

- Pointer Variables (cont.)

ptr

int a=5, b=29,
*ptr = &a; a
ptr
*ptr = b;
a

*ptr = b: the value pointed to by ptr is assigned the
value in b.

N

5

1L

N

9

b

@ UNIVERSITI TEKNOLOGI MALAYSIA

e Indirection Operator in Program 9-3

Program 9-3

// This program demonstrates the use of the indirection operator.
#include <iostream>
using namespace std;

int main()

{
int x = 25; // int variable
int *ptr = nullptr; // Pointer variable, can point to an int
ptr = &X; // Store the address of x in ptr

// Use both x and ptr to display the value in x.

cout << "Here is the value in x, printed twice:\n";
cout << X << endl; // Displays the contents of x
cout << *ptr << endl; // Displays the contents of x

// Assign 100 to the location pointed to by ptr. This
// will actually assign 100 to X.

*ptr = 100;)
(program continues)

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

e Indirection Operator in Program 9-3

Program 9-3 (continued)

// Use both x and ptr to display the value in x.
cout << "Once again, here is the value in x:\n";

cout << X << endl; // Displays the contents of x
cout << #*ptr << endl; // Displays the contents of x
return 0;

}

Program Output

Here is the value in x, printed twice:
25

25
Once again, here is the value in x:

100
100

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIII

Exercise 2
2

* Give memory snapshots after each of
these sets of statements are executed.

1. int-a=1,_ =2 S EXpEtr:
ptr = &b;
2 int a=1, b=2, *ptr=&b:;
a = *ptrxr;
3. int a=1, b=2, c=5, *ptr=&c;
b = *ptx;
*ptr = a;
4. int a=1, b=2, c=5, *ptr;

www.utm.my

@UTM/ Something like Pointers:
/ Arrays

* We have already worked with something
similar to pointers, when we learned to
pass arrays as arguments to functions.

* For example, suppose we use this
statement to pass the array numbers to

the showValues function:

showValues (numbers, SIZE);

Something like Pointers:
Arrays

The values parameter, in the
showValues function, points to the
—=(1|2 [3]4]° numbers array.

numbers array

showValues (numbers, SIZE);

' |
address 5
|
C++ automatically l |

stores the address void showValues(int values[], int size)
of numbers in the {

for (int count = 0; count < size; count++)
values parameter. cout << values[count] << endl;

innovative e entrepreneurial e global www.utm.my

@UTM/ Something like Pointers:

/ Reference Variables

* We have also worked with something like pointers
when we learned to use reference variables.

« Suppose we have this function:
void getOrder (int &donuts)
{

cout << "How many doughnuts do you want? ";
cin >> donuts;

}

* And we call it with this code:
int jellyDonuts;
getOrder (jellyDonuts) ;

innovative e entrepreneurial e global

www.utm.my

Something like Pointers:
Reference Variables

jellyDonuts variable

The donuts parameter, in the
getOrder function, points to the
jellyDonuts variable.

—

getOrder(jellyDonuts);
I

address
l

C++ automatically

id tOrd int &d t
stores the address 'o¢ 9etoraer(int &donuts)

{

Of:je]_l}ﬂDOITui:S cout << "How many doughnuts do you want? ";
in the donuts St donutss

}
parameter.

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

3 - The Relationship Between
Arrays and Pointers

@,_UTM/ The Relationship Between
Arrays and Pointers

* Array name is starting address of array
int vals|[] = {4, 7, 11};

4 '/ 11

starting address of vals: 0x4a00

cout << wvals; // displays 0x4a00

cout << wvals[0]; // displays 4

@UTM/ The Relationship Between
/ Arrays and Pointers
int x[5], *ptr_x;
ptr x = &x[0];

ptr x
Memory ol 2 | 2| 2| 2
allocation

x[0] x[1] x[2] x[3] x[4]

The memory location for x[1] is immediately
follow the memory location of x|[0].

@UTM/ The Relationship Between
' Arrays and Pointers (cont.)

* Array name can be used as a pointer

constant:
int vals|[] = {4, 7, 11};
cout << *vals; // displays 4

* Pointer can be used as an array name:
int *valptr = vals;
cout << valptr[l]; // displays 7

@ UNIVERSITI TEKNOLOGI MALAYSIA

e Array Name Being Dereferenced in Program 9-5

Program 9-5

// This program shows an array name being dereferenced with the *
// operator.

¢include <iostream>

using namespace std;

int main()

{
short numbers|[] = {10, 20, 20, 40, 50};

cout << "The first element of the array is "
cout << *numbers << endl;

return 0;

-

Program Output
The first element of the array is 10

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

7 Exercise 4

» By refering Program 9-5, print the third

element in the array using pointer
number.

IIIIIIIIIIIIIIIIIIIIIIII

4 - Pointers Arithmetic

IIIIIIIIIIIIIIIIIIIIIIIIII

7”7 Pointers Arithmetic

» Operations on pointer variables:

Operation Example
int vals([]={4,7,11};
int *valptr = vals;
++, —- valptr++; // points at 7

valptr--; // now points at 4
+, - (pointerand int) |cout << * (valptr + 2); // 11

+=, -= (pointer valptr = vals; // points at 4
and int) valptr += 2; // points at 11
- (pointer from pointer) cout << valptr—val; // difference

// (number of ints) between wvalptr
// and val

innovative e entrepreneurial e global www.utm.my

UNIVERSITI TEKNOLOGI MALAYSIA

From Program 9-9

const int SIZE = 8;

int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

int *numPtr = nullptr; // Pointer

int count; // Counter variable for loops

// Make numPtr point to the set array.
numPtr = set;

// Use the pointer to display the array contents.
cout << "The numbers in set are:\n";

for (count = 0; count < SIZE; count++)
{
cout << *numPtr << " ";
| numPtr++; |
}

// Display the array contents in reverse order.
cout << "\nThe numbers in set backward are:\n";
for (count = 0; count < SIZE; count++)

{
| _numPtr--: |

cout << *numPtr << " ";

}

return 0;

Program Output

The numbers in set are:
5 10 15 20 25 30 35 40
The numbers in set backward are:
40 35 30 25 20 15 10 5

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

| Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr;
valptr = vals;

What is valptr + 17
It means (address in valptr) + (1 * size
of an int)
cout << * (valptr+l); //displays 7
cout << *(valptr+2); //displays 11

Must use () as shown in the expressions

IIIIIIIIIIIIIIIIIIIIIIIIII

P Pointers in Expressions

* depends on the machine used
* depends on the variable type

* For examples,
— Short integers (2 byte)

* Beginning : ptr = 45530
 After ptr++ : ptr = 45532
— Floating point values (4 byte)
* Beginning : ptr = 50200

« After ptr++ : ptr = 50204

IIIIIIIIIIIIIIIIIIIIIIIIII

Array Access

* Array elements can be accessed in many ways:

subscript arithmetic

Array access method Example
array name and [] vals([2] = 17;
pointerto array and [] |valptr[2] = 17;
array name and *(vals + 2) = 17;
subscript arithmetic
pointer to array and *(valptr + 2) = 17;

innovative e entrepreneurial e global

www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

From Program 9-7

const int NUM COINS = 5;

double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
double *doublePtr; // Pointer to a double

int count; // Array index

// Assign the address of the coins array to doublePtr.
doublePtr = colins;

// Display the contents of the coins array. Use subscripts
// with the pointer!

cout << "Here are the values in the coins array:\n";

for (count = 0: count < NUM COTNS: count++)

cout << doublePtr[count] << " ";

r

// Display the contents of the array again, but this time
// use pointer notation with the array name!
cout << "\nAnd here they are again:\n";

for = 0; < NUM :_count++)

cout << *(coins + count) << " ";
cout << endl;

Program Output

Here are the wvalues in the coins array:
0.05 0.1 0.25 0.5 1

And here they are again:
0.05 0.1 0.25 0.5 1

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIII

5 - Initializing Pointers

IIIIIIIIIIIIIIIIIIIIIIIIII

P Initializing Pointers

* Can initialize at definition time:
int num, *numptr = #
int val[3], *valptr = val;

« Cannot mix data types:

double cost;

int *ptr = &cost; // won t work
* Can test for an invalid address for ptr
with:

1f (!ptr)

www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Exercise 6

For each of the following problems, give a memory snapshot that includes
both variables and pointer references after the problem statements are exe-
cuted. Include as much information as possible. Use question marks to indi-
cate memory locations that have not been initialized.

)l double x=15.6, y=10.2, *ptr l=gy, *ptr 2=&x;

*ptr 1 ="Fptr 2 iF x;

2¢ int w=10, x=2, *ptr 2=gx;
*ptr 2 -= w;
3 int x[5]={2,4,6,8,3};

int *ptr 1=NULL, *ptr 2=NULL, *ptr 3=NULL;
ptr 3 = &x[0];
ptr_1 = ptr 2 = pErii3ist” 2¢

4. int w[4], *first_ptr=NULL, *last ptr=NULL;

first ptr = &w[O0];
last _ptr = first_ptr 53

i i i www.utm.my
innovative e entrepreneurial e global

IIIIIIIIIIIIIIIIIIIIIIII

6 - Comparing Pointers

IIIIIIIIIIIIIIIIIIIIIIIIII

a— Comparing Pointers

» Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

« Comparing addresses in pointers is not
the same as comparing contents pointed

at by pointers:
if (ptrl == ptr2) // compares
// addresses
if (*ptrl == *ptr2) // compares

// contents

ﬁ Exercise 7

#include <iostream>
using namespace std;

int main ()

{

int value=7;
int *ptrl = &value; Pointers are Equal
int *ptr2 = &value;

1f (ptrl==ptr2) {

cout << "Pointers are Equal”;
}else(

cout << "Pointers are Not Equal”;}

return 0O;

}

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIII

7 - Pointers as Function Parameters

IIIIIIIIIIIIIIIIIIIIIIII

/-/ Pointers as Function Parameters

A pointer can be a parameter
 implements call-by-address references

« allows to modify the values by statements within
a called function

 Requires:

1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to int
2) asterisk * in body to dereference the pointer

cin >> *ptr;
3) address as argument to the function
getNum(&num) ; // pass address of num to getNum

www.utm.my

Example 7.1

void swap(int *x, int *y)
{ int temp;

temp = *x;

*x = *y;

*y = temp;

int numl = 2, num2 = -3;

swap (&numl, &num2) ;

www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Program 9-11

Example 7.2

// This program uses two functions that accept addresses of
// wvariables as arguments.

#include <iostream>

using namespace std;

// Function prototypes
void getNumber(int *);
void doubleValue(int *);

int main()

{
int number:

// Call getNumber and pass the address of number.
getNumber (&number) ;

// Call doubleValue and pass the address of number.
doubleValue(&number) ;

// Display the walue in number.
cout << "That wvalue doubled is " << number << endl;

return 0;

innovative e entrepreneurial e global www.utm.my

©UTM Example 7.2 (cont.)

Program 9-11 (continued)

//**1\'********************

// Definition of getNumber. The parameter, input, is a pointer. *
// This function asks the user for a number. The wvalue entered *

// 1s stored in the wvariable pointed to by input. *
//**1\'********************

void getNumber(int *input)

{
cout << "Enter an integer number: ";
cin >> *input;

//*****************************'k*'k*'k****'k***'k********************

// Definition of doubleValue. The parameter, val, is a pointer. *
// This function multiplies the wvariable pointed to by wval by *
/) two. *
//*****************************'k*'k*'k*****************************

void doubleValue(int *wval)

{

*val *= 2;

Program Output with Example Input Shown in Bold
Enter an integer number: 10 [Enter]
That wvalue doubled is 20

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

P Exercise 8

» Refer to Exercise 10.14 No. 5 in pg. 298.

* Solve the problem.

T Pointers to Constants

* |f we want to store the address of a constant in a
pointer, then we need to store it in a pointer-to-
const.

« Example: Suppose we have the following
definitions:
const int SIZE = 6;

const double payRates[SIZE] =
{ 18.55, 17.45, 12.85,

14.97, 10.35, 18.89 };

* |In this code, payRates is an array of constant
doubles.

.......................... Pointers to Constants

—

* Suppose we wish to pass the payRates
array to a function? Here's an example of
how we can do it.

vold displayPayRates (const double *rates, 1nt size)

{

for (int count = 0; count < size; count++)

{
cout << "Pay rate for employee " << (count + 1)

<< " is $" << *(rates + count) << endl;

The parameter, rates, is a pointer to const double.

www.utm.my

Declaration of a
Pointer to Constant

The asterisk indicates that
rates is a pointer.

|

const doublel*rates

This is what rates points to.

I

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIIII

P Constant Pointer

* A constant pointer is a pointer that is

Initialized with an address, and cannot
point to anything else.

 Example

int value = 22;
int * const ptr = &value;

Declaration of a
Constant Pointers

* const indicates that
ptr is a constant pointer.

int”* const ptr

This is what ptr points to.

Declaration of a
Constant Pointers

* const indicates that
ptr is a constant pointer.

int”* const ptr

This is what ptr points to.


~~~~~~~~~~~~~~~~~~~~~~~~ Constant Pointer to Constants

—

* A constant pointer to a constant is:
— a pointer that points to a constant

— a pointer that cannot point to anything except
what it is pointing to

« Example:
int value = 22;

const int * const ptr = &value;




Constant Pointer to Constants

* const indicates that
ptr is a constant pointer.

|const int”* const ptr

This is what ptr points to.




IIIIIIIIIIIIIIIIIIIIIIII

8 - Dynamic Memory Allocation




@M:G"‘Mj)ynamic Memory Allocation

» Can allocate storage for a variable while
program is running

« Computer returns address of newly
allocated variable

* Uses new operator to allocate memory:
double *dptr;
dptr = new double;

* new returns address of memory location

www.utm.my



UTM/ . .
@_"“““ == 7 Dynamic Memory Allocation
» Can also use new to allocate array:

const int SIZE = 25;
arrayptr = new double[SIZE];

« Can then use [] or pointer arithmetic to

access array:
for(i = 0; 1 < SIZE; i++)

arrayptr[i] = 1 * 1;
or
for(i = 0; 1 < SIZE; i++)
* (arrayptr + 1) =1 * 1;

* Program will terminate if not enough
memory available to allocate

www.utm.my




@_UTM/ Releasing Dynamic Memory
* Use delete to free dynamic memory:

delete fptr;
* Use [] to free dynamic array:

delete |[] arrayptr;
* Only use delete with dynamic memory!




emory Allocation in Program 9-14

Program 9-14

// This program totals and averages the sales figures for any
// number of days. The figures are stored in a dynamically

// allocated array.

#include <iostream>

$#include <iomanip>

using namespace std;

int main()

{
double *sales = nullptr, // To dynamically allocate an array
total = 0.0, // Accumulator
average; // To hold average sales
int numDays, // To hold the number of days of sales
count; // Counter variable

// Get the number of days of sales.
cout << "How many days of sales figures do you wish ";

cout << "to process? ";
cin >> numDays;

innovative e entrepreneurial e global www.utm.my




@ UNIVERSITI TEKNOLOGI MALAYSIA

ynamic Memory Allocation in Program 9-14

// Dynamically allocate an array large enough to hold
// that many days of sales amounts.
sales = new double[numDays];

// Get the sales figures for each day.
cout << "Enter the sales figures below.\n";

for (count = 0; count < numDays; count++)

{
cout << "Day " << (count + 1) << ": ";
cin >> sales[count];

}

// Calculate the total sales

for (count = 0; count < numDays; count++)

{

total += sales[count];

}

// Calculate the average sales per day
average = total / numDays;

// Display the results

cout << fixed << showpoint << setprecision(2);
cout << "\n\nTotal Sales: $§" << total << endl;
cout << "Average Sales: §" << average << endl;

Program 9-14 (Continued)

innovative e entrepreneurial e global www.utm.my




@ UNIVERSITI TEKNOLOGI MALAYSIA

/ Dynamic Memory Allocation in Program 9-14
Program 9-14 (Continued)

// Free dynamically allocated memory

delete [] sales;
sales = nullptr; // Make sales a null pointer.

return 0;

}

Program Output with Example Input Shown in Bold

How many days of sales figures do you wish to process? 5 [Enter]
Enter the sales figures below.

Day 1: 898.63 [Enter]

Day 2: 652.32 [Enter]
Day 3: 741.85 [Enter]
Day 4: 852.96 [Enter]
Day 5: 921.37 [Enter]

Total Sales: $4067.13
Average Sales: $813.43

innovative e entrepreneurial e global www.utm.my




Exercise 9

« Given the following program with 3 errors. Rewrite the
program to store the power value of the array’ s index
and print the values.

int main () {
const 1nt SIZE = 25;
int *arrayptr;
arrayptr = new double[SIZE];
for(int 1 = 0; 1 < SIZE; 1i++)
*arrayptr[i] = 1 * 1i;
for(int 1 = 0; 1 < SIZE; 1++)
cout <<*arrayptr + 1<<endl;

return 0;

innovative e entrepreneurial e global www.utm.my



IIIIIIIIIIIIIIIIIIIIIIIIII

9 - Returning Pointers from Functions




@UTM/ Returning Pointers from

4 Functions

* Pointer can be the return type of a
function:

int* newNum/() ;

* The function must not return a pointer to a
local variable in the function.

A function should only return a pointer:

— to data that was passed to the function as an
argument, or

— to dynamically allocated memory




@ UNIVERSITI TEKNOLOGI MALAYSIA

rogram 9-15

int *getRandomNumbers(int num)

{
int *arr = nullptr; // Array to hold the numbers
// Return a null pointer if num is zero or negative.
if (num <= 0)
return nullptr;
// Dynamically allocate the array.
arr = new int[num];
// Seed the random number generator by passing
// the return value of time(0) to srand.
srand( time(0) );
// Populate the array with random numbers.
for (int count = 0; count < num; count++)
arr[count] = rand();
// Return a pointer to the array.
return arr;
}

innovative e entrepreneurial e global www.utm.my




‘ UNIVERSITI TEKNOLOGI MALAYSIA

innovative e entrepreneurial e global www.utm.my



