
Loop / Repetition

The concept of a loop

• The main idea of a loop is to repeat an action or a series of 

actions.



Loops

• But, when to stop looping? 

• In the following flowchart, the action is executed over and over 

again. It never stop – This is called an infinite loop

• Solution – put a condition to tell the loop either continue 

looping or stop.



• A loop has two parts – body and 

condition 

• Body – a statement or a block 

of statements that will be 

repeated.

• Condition – is used to control 

the iteration – either to 

continue or stop iterating.

Loops 

Body

Condition

True

False



• Two forms of loop – pretest 

loop  and post-test loop.

• Pretest loop 

– the condition is tested  first,

before we start executing the 

body.

– The body is executed if the 

condition is true.

– After executing the body, the 

loop repeats

Types of loop 

Pretest loop

Body

Condition

True

False

Here must be a 

“True”



• Post-test loop 

– the condition is tested  later,

after executing the body.

– If the condition is true, the 

loop repeats, otherwise it 

terminates.

– The body is always executed 

at least once.

Types of loop

Post-test loop

Body

Condition

True

False

The iterating part 

must be a “True”



• Beside the body and condition, a loop may have two other parts –

Initialization and Updating

Parts of a loop

Post-test loopPretest loop

Body

Condition

True

False

Initialization

Updating

Body

Condition

True

False

In itialization

Updating



• Initialization

– is used to prepare a loop before it can 
start –usually, here we initialize the 
condition

– The initialization must be written 
outside of the loop – before the first 
execution of the body.

• Updating

– is used to update the condition 

– If the condition is not updated, it 
always true => the loop always repeats 
– an infinite loop

– The updating part is written inside the 
loop – it is actually a part of the body.

Parts of a loop

Body

Condition

True

False

In itia lization

Updating



Example: These flowcharts print numbers 10 down to 1

Parts of a loop

Post-test loopPretest loop

is n>0?

True

False

n=10

n = n -1

Print
n

is n>0?

True

False

n=10

n = n -1

Print

n

Initialize n before start 

the loop

Every time the loop 

repeats, n is updated



• C++ provides three loop statements:

Loop statements

C++ loop constructs



while statement

while flowchart

while (Condition)

{

Repeated_Actions;

}



Example: This while statement prints numbers 10 down to 1

Note that, the first line (n=10) is 

actually not a part of the loop statement.

while statement

n=10;

while (n>0)

{

cout << n <<“ “;

n=n-1;

}

is n>0?

True

False

n=10

n = n -1

Print

n

Output:

10 9 8 7 6 5 4 3 2 1 



for statement

for flowchart

for (Initialization; Condition; Updating)

{

Repeated_Actions;

}

Repeated_Actions

Condition

True

False

Initialization

Updating



for statement

for (n=10; n>0; n=n-1) 

{

cout << n <<“ “;

}

Example: This for statement prints numbers 10 down to 1

is n>0?

True

False

n=10

n = n -1

Print

n

Output:

10 9 8 7 6 5 4 3 2 1 



for vs. while statements

Comparing for and while loops



do…while statement

do

{

Repeated_Actions;

} while (Condition);



do…while statement
Example: This do…while statement prints numbers 10 down to 1

Note that, the first line (n=10) is 

actually not a part of the loop statement.

n=10;

do

{

cout << n << “ “;

n=n-1;

} while (n>0);

is n>0?

True

False

n=10

n = n -1

Print

n



• If the body part has only one statement, then the bracket 

symbols, { } may be omitted.

• Example: These two for statements are equivalent.

Loop statements

for (n=10; n>0; n=n-1)

{

cout << n;

}

for (n=10; n>0; n=n-1)

cout << n;



• You have learn that, the repetition of a loop is controlled by the 
loop condition.

• C++ provides another way to control the loop, by using jump 
statements. 

• There are four jump statements:

Jump statements



Breaking Out of a Loop

• Can use break to terminate execution of a 

loop

• Use sparingly if at all – makes code harder to 

understand

• When used in an inner loop, terminates that 

loop only and returns to the outer loop

5-74



• It causes a loop to terminate

Example:

break statement

for (n=10; n>0; n=n-1)

{

if (n<8) break;

cout << n << “ “;

}



break statement

break an inner loop



The continue Statement

• Can use continue to go to end of loop and 
prepare for next repetition

– while and do-while loops go to test and 

repeat the loop if test condition is true

– for loop goes to update step, then tests, and 

repeats loop if test condition is true

• Use sparingly – like break, can make

program logic hard to follow

5-77



• In while and do…while loops, the continue statement transfers the 
control to the loop condition.

• In for loop, the continue statement transfers the control to the 
updating part.

continue statement

The continue statement



Example:

continue statement

for (n=10; n>0; n=n-1)

{

if (n%2==1) continue;

cout << n <<“ “;

}



Example:

continue statement

n = 10;

while (n>0)

{

cout << n << “ “;

if (n%2==1) continue;

n = n –1;

}



• You will learn this statement in Chapter 4 – Function.

• It causes a function to terminate.
Example:

return statement

void print_numbers()

{ int n=10;

int i;

while (n>0)

{

for (i=n;i>0; i--)

{

if (i%2==1) continue;

if (i%4==0) break;

if (n==6) return;

cout <<i <<“ “;

}

cout << endl;

n=n-1;

}

}



• When to use return?

• Example: the following functions are equivalent

return statement

float calc_point(char grade)

{

float result;

if (grade=='A') result = 4.0;

else if (grade=='B') result = 3.0;

else if (grade=='C') result = 2.5;

else if (grade=='D') result = 2.0;

else result = 0.0;

return result;

}

float calc_point(char grade)

{

if (grade=='A') return 4.0;

if (grade=='B') return 3.0;

if (grade=='C') return 2.5;

if (grade=='D') return 2.0;

return 0.0;

}

The else part of each if

statement may be omitted. It 

has never been reached.



return statement

float calc_point3(char grade)

{ 

float result;

switch (grade)

{

case 'A': result = 4.0;

break;

case 'B': result = 3.0;

break;

case 'C': result = 2.5;

break;

case 'D': result = 2.0;

break;

default:  result =0.0;

}

return result;

}

float calc_point4(char grade)

{

switch (grade)

{

case 'A': return 4.0;

case 'B': return 3.0;

case 'C': return 2.5;

case 'D': return 2.0;

}

return 0.0;

}

The break statement of each 

case may be omitted. It has 

never been reached.



• It is used to translate connector symbols – jump to another part inside a 
program.

• But, it is not recommended to use - it may cause unstructured programs.

Example:

goto statement

n=10;

A:

cout <<n <<“ “;

n = n -1;

if (n>0) goto A;

is  n>0?

False

n=10

n = n -1

Print
n

A

ATrue



Pattern 1

while (condition)

{

Repeated_Actions;

}

Translating flowchart to C++ code

Repeated_Actions

condition

True

False

Here must be a 

“True”

Here must be a 

“False”



Example: Calculate the average of odd numbers 1 to  9

sum = 0;

i=1;

while (i<11)

{

sum = sum + i;

i = i + 2;

}

avrg = sum/5.0;

Translating flowchart to C++ code

i  =  i+2

i < 11

True

False

sum = 0

i =1

av rg = sum /5

sum =  sum + i



Pattern 2

do

{

Repeated_Actions;

} while(condition);

Translating flowchart to C++ code

Repeated_Actions

condition

True

False

The iterating part 

must be a “True”



Example: Prints numbers 1 to 10

i=1;

do

{

cout <<i <<endl;

i = i + 1;

} while (i<11);

Translating flowchart to C++ code

i <11

True

False

i =1

PRINT

i

i =  i + 1



Pattern 3

for (initialize; condition; update)

{

Repeated_Actions;

}

Translating flowchart to C++ code

Repeated_Actions

condition

True

False

initialize

update

or

initialize;

while (condition)

{

Repeated_Actions;

update;

}



total = 0;

for (i=1; i<11; i++)

{

total = total + i;

}

cout <<total;

Translating flowchart to C++ code

or

total = 0;

i=1;

while (i<11)

{

total = total + i;

i++;

}

cout <<total;

Example: Print the total of numbers 1 to  10

total = total + i

i<11

True

False

i=1

i=i+1

PRINT

total

total = 0



Deciding Which Loop to Use

• while: pretest loop (loop body may not be 
executed at all)

• do-while: post test loop (loop body will 
always be executed at least once)

• for: pretest loop (loop body may not be 
executed at all); has initialization and update 
code; is useful with counters or if precise 
number of repetitions is known



Nested Loops

• A nested loop is a loop inside the body of 
another loop

• Example:

for (row = 1; row <= 3; row++)
{                           

for (col = 1; col <= 3; col++)
{  

cout << row * col << endl;
}

}

5-92

outer loop

inner loop



Notes on Nested Loops

• Inner loop goes through all its repetitions for 

each repetition of outer loop

• Inner loop repetitions complete sooner than 

outer loop

• Total number of repetitions for inner loop is 

product of number of repetitions of the two 

loops.  In previous example, inner loop 

repeats 9 times

5-93



In-Class Exercise

• How many times the outer loop is executed? How 

many times the inner loop is executed? What is the 

output?
#include <iostream>

using namespace std;

int main()

{   int x, y;

for(x=1;x<=8;x+=2)

for(y=x;y<=10;y+=3)

cout<<"\nx = " <<x << "  y = "<<y;

system("PAUSE");

return 0;}


