

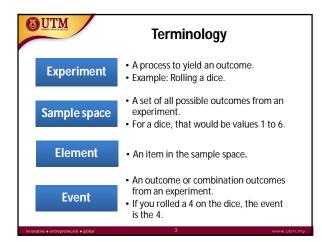
Probability Theory

- The theory of probability plays a crucial role in making inferences.
- Probability measures how likely something is to occur.
- Probability is the ratio of the number of favourable cases to the total number of cases, assuming that all of the various cases are equally possible.

innovative • entrepreneurial • global

OUTM

........



How to Compute Probability

- We assign a probability weight *P*(*x*) to each element of the sample space.
- Weight represents what we believe to be relative likelihood of that outcome.
- There are two rules in assigning weight:
 - i) The weight must be non-negative numbers.
 - ii) The sum of the weights of all the elements in a sample space must be 1.

innovative • entrepreneurial • global

www.utm.my

OUTM

...cont'd

- Let E be an event.
- The probability of E, P(E) is

$$P(E) = \mathop{\rm a}\limits_{x \in F} P(x)$$

 We read this as "P(E) equals the sum, over all x such that x is in E, of P(x)"

innovative • entrepreneurial • global

www.utm.my

OUTM

Probability Axioms

Let S be a sample space. A probability function P from the set of all events in S to the set of real numbers satisfies the following three axioms:

For all events A and B in S,

- 1. $0 \notin P(A) \notin 1$
- 2. $P(\emptyset) = 0$ and P(S) = 1
- 3. If A and B are disjoint, the $P(A \succeq B) = P(A) + P(B)$

A function *P* that satisfies these axioms is called a probability distribution or a probability measure.

innovative • entrepreneurial • glo

www.utm.m

TO UTM

Complementary Probabilities

• The complement of an event A in a sample space S is the set of all outcomes in S except those in A.

$$P(A') = 1 - P(A)$$

• Example:

Let the probability for getting a prize in a lucky draw is 0.075. Thus, the probability of *not* getting a prize in a lucky draw is 1 - 0.075 = 0.925.

innovative a enterpression of a state

ww.utm.n

OUTM

The Uniform Probability Distribution

• The probability of an event occurring is:

$$P(E) = \frac{|E|}{|S|}$$

where:

- E is the set of desired events.
- **S** is the set of all possible events.
- Note that $0 \le |E| \le |S|$:
 - o Thus, the probability will always between 0 and 1.
 - o An event that will never happen has probability 0.
 - o An event that will always happen has probability 1.

anovativa a entranzanaurial a clobal

........

TIME

Example 1

A coin is flipped four times and the outcome for each flip is recorded.

- i) List all the possible outcomes in the sample space.
- ii) Find the event (E) that contain only the outcomes in which 1 tails appears.

innovative • entrepreneurial • glob

ww.utm.my

OUTM

Solution

 The list of all possible outcomes in the sample space. [heads(H), tails (T)]

HHHH	HHHT	HHTH	
HTHH			
THHH	HHTT	HTTH	HTHT
THHT	TTHH	THTH	HTTT
TTHT	TTTH	THTT	TTTT

• The event E that contains only the outcomes in which 1 tails appears.

E={ HHHT, HHTH, HTHH, THHH }

OUTM

Example 2

Two fair dice are rolled. Find the event (E) that the sum of the numbers on the dice is 7.

innovative • entrepreneurial • global

vww.utm.my

OUTM

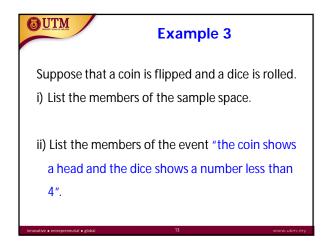
Solution

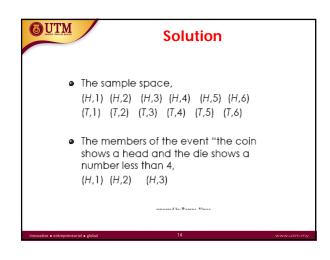
- The number on top face of each die is 1,2,3,4,5,6.
- Let A={1,2,3,4,5,6}
- The sample space is,
 S={ (a, b) ∈A×A | a, b ∈ A }
- The event E that the sum of the numbers on the dice is 7 is,

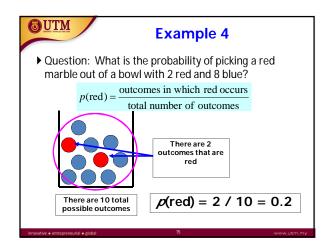
 $E = \{(1,6), (6,1), (2,5), (5,2), (3,4), (4,3)\}$

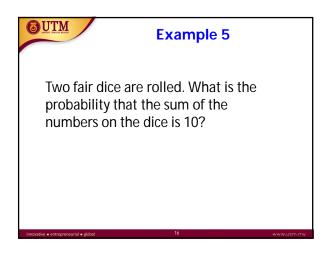
innovative • entrepreneurial • global

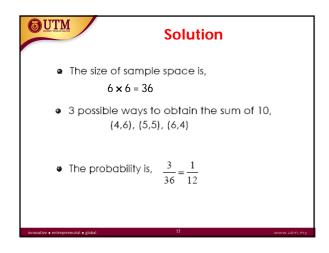
www.utm.

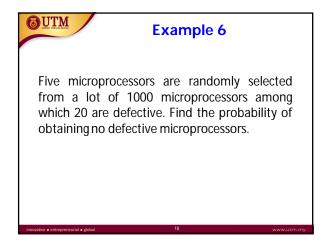












TIME TO THE PARTY OF THE PARTY

Solution

- There are C(1000,5) ways to select 5 microprocessors among 1000.
- There are C(980,5) ways to select 5 good microprocessors since there are 1000-20=980 good microprocessors.
- The probability is, $\frac{C(980,5)}{C(1000,5)} = 0.903735781$

innovative a entrapreneurial a clobs

ww.utm.m

TO UTM

Example 7

There are exactly 3 red balls in a bucket of 15 balls. If we choose 4 balls at random, what is the probability that we do not choose a red ball?

innovative a entranzanaurial a global

........

OUTM

Solution

- There are C(15,4) ways to select 4 balls among 15.
- If we do not choose a red ball, there are C(12,4) ways to select 4 balls among the remaining 12 balls.
- The probability is, $\frac{C(12,4)}{C(15,4)} = \frac{495}{1365} = \frac{33}{91}$

innovative • entrepreneurial • global

w.utm.m

OUTM

Example 8

- There are 5 red balls and 4 white balls in a box.
- 4 balls are selected at random from these balls.
- Find the probability that 2 of the selected balls will be red and 2 will be white.

innovative • entrepreneurial • global

www.utm.my

UTM

Solution

- The size of sample space is C(9,4)
- Select 2 red balls, C(5,2) ways
- Select 2 white balls, C(4,2) ways
- The probability is, $\frac{C(5,2).C(4,2)}{C(9,4)} = \frac{(10)(6)}{126} = \frac{10}{21}$

innovative • entrepreneurial • global

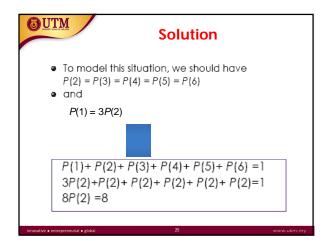
OUTM

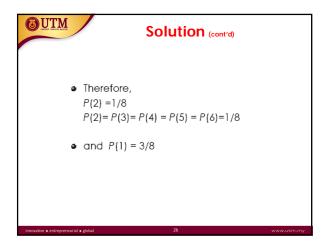
Example 9

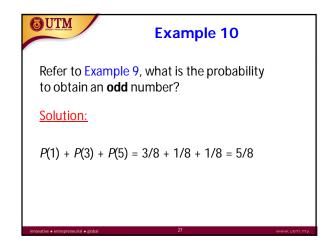
Suppose that a die is biased (or loaded) so that the number 2 through 6 are equally likely to appear, but that 1 appears three times as likely as any other number to appear.

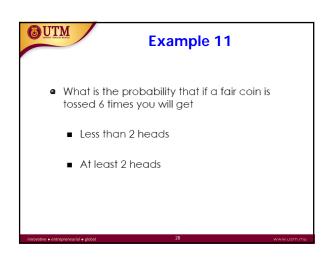
innovative • entrepreneurial • globa

www.utm.n



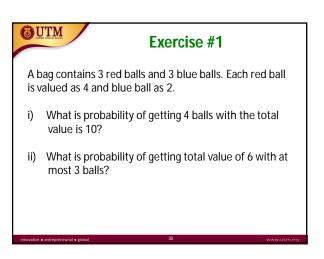






The number of possible outcome is:
 2×2×2×2×2 = 2⁶ = 64
 Let A be the event that less than 2 H's are observed,
 A = { TTTTTT, HTTTTT, TTHTTT, TTHTTT, TTTHTTT, TTTTHTT, TTTTHTT, TTTTTHT }
 Then, P(A) = 7/64
 Let B be the event that at least 2 H's are observed,
 P(B) = 1- (7/64) = 57/64

OUTM



OUTM

Probability of a General Union of Two Events

If S is any sample space and A and B are any events in S, then

$$P(A \succeq B) = P(A) + P(B) - P(A \subsetneq B)$$

innovative a entrangeneurial a global

www.utm.m

UTMJUSTISE TEXADOR BALFISA

Example 12

In a math class of 30 students, 17 are boys and 13 are girls. On a unit test, 4 boys and 5 girls made an A grade. If a student is chosen at random from the class, what is the probability of choosing a girl or an A student?

Solution:

Probabilities: P(girl or A)= P(girl) + P(A) - P(girl and A)

$$=\frac{13}{30} + \frac{9}{30} - \frac{5}{30}$$

 $=\frac{17}{30}$

.. ...

MONIAL LITTO

TO UTM

Example 13

Two fair dice are rolled. What is the probability of getting doubles (2 dice showing the same number) or sum of 6?

innovative • entrepreneurial • globa

ww.utm.my

Solution

Step 1: Find the probability of getting double (2 dice showing the same number):

- Let A denote the event "get doubles"
- Doubles can be obtained in 6 ways, (1,1), (2,2), (3,3), (4,4), (5,5), (6,6)
- P(A) = 6/36 = 1/6

innovative • entrepreneurial • global

OUTM

Solution (cont.)

Step 2: Find the probability of getting a sum of 6:

- Let B denote the event "get a sum of 6".
- Sum of 6 can be obtained in 5 ways (1,5), (2,4), (3,3), (4,2), (5,1)
- P(B) = 5/36

innovative • entrepreneurial • global

TO UTM

Solution (cont.)

Step 3: Find the intersection of two events:

- The event A ∩ B is "get doubles and get a sum of 6"
- Only 1 way, (3,3)
- $P(A \cap B) = 1/36$

innovative • entrepreneurial • glob

www.utm.i

UTM

Solution (cont.)

Step 4: Find the union of two events:

 The probability of getting doubles or a sum of 6 is,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$=$$
 $\frac{1}{6} + \frac{5}{36} - \frac{1}{36} = \frac{5}{18}$

innovative • entrepreneurial • globa

ww.utm.r

OUTM

Example 14

- Suppose that a student is selected at random among 90 students, where 35 are over 100 pounds, 20 are boys, and 15 are over 100 pounds and boys.
- What is the probability that the student selected is over 100 pounds or a boy?

incompline a contraction will a slobel

.....

OUTM

Solution

- Let A denote the event "the student is over 100 pounds".
 P(A)=35/90
- Let B denote the event "the student is a boy"

P(A)=20/90

- P(A ∩ B)=15/90
- The probability that the student selected is over 100 pounds or a boy,

$$P(A \cup B) = \frac{35}{90} + \frac{20}{90} - \frac{15}{90} = \frac{40}{90}$$

innovative • entrepreneurial • global

w.utm.my

OUTM

Exercise #2

On New Year's Eve, the probability of a person having a car accident is 0.09. The probability of a person driving while intoxicated is 0.32 and probability of a person having a car accident while intoxicated is 0.15. What is the probability of a person driving while intoxicated or having a car accident?

innovative • entrepreneurial • globa

www.utm.m

UTM

Exercise #3

Mira is going to graduate from a computer science department in a university by the end of the semester. After being interviewed at two companies she likes, she assess that her probability of getting an offer from company A is 0.8, and her probability of getting an offer from company B is 0.6. If she believes that the probability that she will get offers from both companies is 0.5, what is the probability that she will get either from company A or company B (or both)?

innovative • entrepreneurial • global

ww.utm.my

OUTM

Mutually Exclusive Events

- Two events are mutually exclusive if they cannot occur at the same time.
- Events A and B are mutually exclusive if

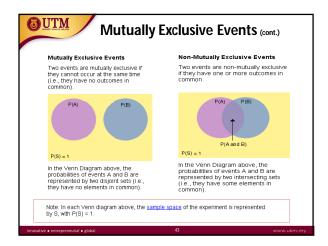
$$A \cap B = \emptyset$$

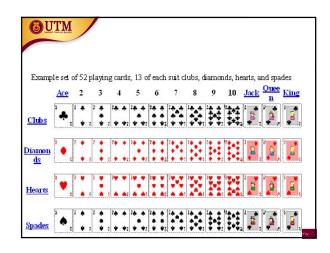
• If A and B are mutually exclusive events,

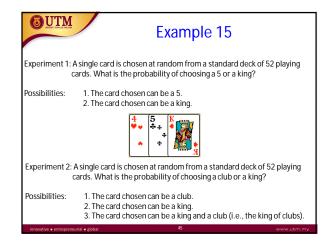
$$P(A \cup B) = P(A) + P(B)$$

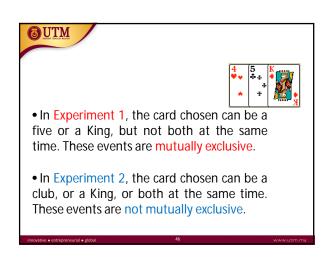
innovative • entrepreneurial • globa

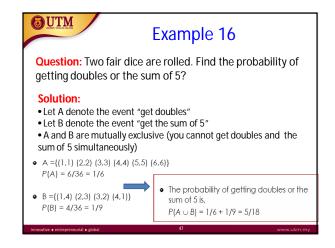
www.utm.m

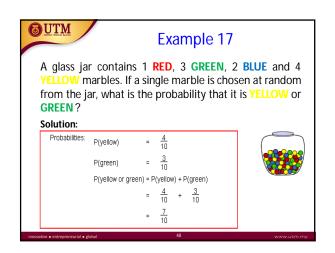












TITM ON THE PROPERTY OF THE PR

Conditional Probability

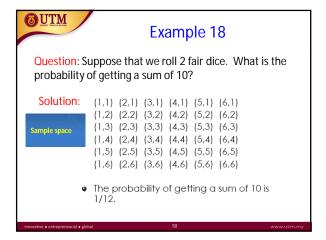
- Let A and B be events, and assume that P(B)>0.
- The conditional probability of A given B is,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Definition: The **conditional probability** of an event **A** in relationship to an event **B** is the probability that event **A** occurs given that event **B** has already occurred. The notation for conditional probability is P(A|B) [pronounced as **the probability of event A given B**].

innovative • entrepreneurial • globa

ww.utm.my



OUTM

Example 19

Question: Refer to **Example 18**, what is the probability of getting a sum of 10 given that at least one die is 5?

Solution:

- Let A denote the event "getting a sum of 10".
- Let B denote the event "at least one die is 5".
- Thus, $P(A \subset B) = 1/36$ and P(B) = 11/36
- The probability of getting a sum of 10 given that at least 1 die is 5 is,

$$P(A|B) = \frac{P(A \ C B)}{P(B)} = \frac{1/36}{11/36} = \frac{1}{11}$$

innovative • entrepreneurial • global

ww.utm.m

OUTM

Example 20

Suppose that we roll 2 fair dice. Find the probability of **getting a sum of 7**, **given that the digit in the first die is greater than in the second.**

innovative • entrepreneurial • glob

www.utm.my

OUTM

Solution

- The sample space S consists of 6×6=36 outcomes.
- Let A be the event "the sum of digits of the 2 dice is 7"

A={ (6,1), (5,2), (4,3), (3,4), (2,5), (1,6) }

innovative • entrepreneurial • global

53

OUTM

Solution (cont.)

• Let B be the event "the digit in the first die is greater than the second"

B={ (6,1), (6,2), (6,3), (6,4), (6,5), (5,1), (5,2), (5,3), (5,4), (4,1), (4,2), (4,3), (3,1), (3,2), (2,1) }

P(B)=15/36

innovative • entrepreneurial • global

www.utm.my

TO UTM

Solution (cont.)

 Let C be the event "the sum of digits of the 2 dice is 7 but the digit in the first die is greater than the second"

$$C = \{ (6,1), (5,2), (4,3) \} = A \cap B$$

$$P(A \cap B) = 3/36$$

innovative • entrepreneurial • glob

ww.utm.my

UTM

Solution (cont.)

 The probability of getting a sum of 7, given that the digit in the first die is greater than in the second is,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{(3/36)}{(15/36)} = \frac{1}{5}$$

innovation a entrapreneurial a global

MORIAL LITTO

OUTM

Example 21

Weather records show that the probability of high barometric pressure is 0.85 and the probability of rain and high barometric pressure is 0.15. What is the probability of rain given high barometric pressure?

Solution:

- Let **H** denote the event "rain".
- Let *T* denote the event "high barometric pressure".
- The probability of rain given high barometric pressure is,

$$P(H|T) = \frac{P(H \ C T)}{P(T)} = \frac{0.15}{0.85} = 0.1765$$

innovative • entrepreneurial • globa

OUTM

Exercise #4

The probability that a doctor correctly diagnose a particular illness is 0.7. Given that the doctor makes an incorrect diagnosis, the probability that the patient files a lawsuit is 0.9. What is the probability that the doctor makes an incorrect diagnosis and the patient sues?

innovative • entrepreneurial • global

www.utm.my

OUTM

Chain Rule for Conditional Probability

• The chain rule for conditional probability with *n* events is as follows:

$$P(A_1 \subsetneq A_2 \subsetneq \subsetneq A_n) = P(A_1)P(A_2 | A_1)P(A_3 | A_2, A_1)....P(A_n | A_{n-1}, A_{n-2}, ...A_n)$$

innovative • entrepreneurial • global

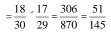
TIM

Example 22

Mr. Basyir needs two students to help him with a science demonstration for his class of 18 girls and 12 boys. He randomly choose one student who comes to the front of the room. He then chooses a second student from those still seated. What is the probability that both students chosen are girls?

Solution:

P(Girl1 and Girl2) = P(Girl1) and P(Girl2|Girl1)



力

www.utm.my

OUTM

Example 23(a)

In a factory there are 100 units of a certain product, 5 of which are defective. We pick three units from the 100 units at random. What is the probability that none of them are defective?

Solution:

Let A_i as the event that i-th chosen unit is not defective.

$$P(A_1 \ \zeta \ A_2 \ \zeta \ A_3) = P(A_1)P(A_2 \ | A_1)P(A_3 \ | A_2, A_1)$$

$$P(A_1) = \frac{95}{100}; \ P(A_2 \ | A_1) = \frac{94}{99}; \ P(A_3 \ | A_2, A_1) = \frac{93}{98}$$

$$P(A_1 \c A_2 \c A_3) = \frac{95}{100} \cdot \frac{94}{99} \cdot \frac{93}{98} = 0.8560$$

innovative • entrepreneurial • global

MONING LITTED PROV

TIME

Example 23(b)

In a shipment of 20 computers, 3 are defective. Three computers are randomly selected and tested. What is the probability that all three are defective if the first and second ones are not replaced after being tested?

Solution:

Probabilities: P(3 defectives) =

$$\frac{3}{20} \cdot \frac{2}{19} \cdot \frac{1}{18} = \frac{6}{6840} = \frac{1}{1140}$$

OUTM

Representing Conditional Probabilities with a Tree Diagram

Example:

www.utm.my

OUTM

Solutions

Let, R = event of rainy, T = event of heavy traffic, L = event of I'm late to work

....

OUTM

Solutions (cont'd)

a) What is the probability that it's not raining and there is heavy traffic and I'm not late?

$$P(R^{c} \ \zeta \ T \ \zeta \ L^{c}) = P(R^{c})P(T | R^{c})P(L^{c} | T, R^{c})$$
$$= \frac{2}{3} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{1}{8}$$

a) What is the probability that I'm late?

$$P(L) = P(R, T, L) + P(R, T^c, L) + P(R^c, T, L) + P(R^c, T^c, L)$$
$$= \frac{1}{12} + \frac{1}{24} + \frac{1}{24} + \frac{1}{16} = \frac{11}{48}$$

innovative • entrepreneurial • global

OUTM

Solutions (cont'd)

c) Given that I arrived late at work, what is the probability that it's rained that day?

We need to find P(R|L) using $P(R|L) = \frac{P(R \ \ \ \ \ \ \)}{P(L)}$

$$P(R \subsetneq L) = P(R, T, L) + P(R, T^{c}, L) = \frac{1}{12} + \frac{1}{24} = \frac{1}{8}$$

$$P(R|L) = \frac{P(R \ C \ L)}{P(L)} = \frac{\frac{1}{8}}{\frac{11}{48}} = \frac{6}{11}$$

innovative • entrepreneurial • glob

www.utm.i

TUTM

Law of Total Probability

• If B_1 and B_2 are disjoint events with $P(B_1) + P(B_2) = 1$, then for any event E,

$$P(E) = P(E \ \zeta \ B_1) + P(E \ \zeta \ B_2)$$

= $P(E | B_1)P(B_1) + P(E | B_2)P(B_2)$

• More generally, if $B_1, B_2, ..., B_k$ are disjoint events with $P(B_1) + P(B_2) + ... + P(B_k) = 1$, then for any event E,

$$P(E) = P(E \ \zeta \ B_1) + P(E \ \zeta \ B_2) + \dots + P(E \ \zeta \ B_k)$$

= $P(E | B_1) P(B_1) + P(E | B_2) P(B_2) + \dots + P(E | B_k) P(B_k)$

UTM

Example 24

Paediatric department researcher examines the medical records of toddlers that came to a particular paediatric clinic. He found that 20% of them came for flu treatment and 10% of mothers of the toddler that having flu are also having flu. 30% of the mothers that came to the clinic are found having flu.

- a) What is the probability of the toddler having flu given that the mother having flu.
- b) What if the probability of the toddler having flu given that the mother is not having flu.

OUTM

Solution

What is the probability of the toddler having flu given that the mother

Let, T: event of toddler having flu; M: event of mother having flu

$$P(T) = 0.2; P(M \C T) = 0.1; P(M) = 0.3$$

 $P(T | M) = \frac{P(M \C T)}{P(M)} = \frac{0.1}{0.3} = 0.33$

 $P(T \mid M) = \frac{P(M \ \zeta \ T)}{P(M)} = \frac{0.1}{0.3} = 0.33$ What if the probability of the toddler having flu given that the mother is not having flu.

According to the law of total probability:

$$P(T) = P(T \subsetneq M) + P(T \subsetneq M')$$
; where $P(M) + P(M') = 1$

$$0.2 = 0.1 + P(T \C M')$$

$$P(T \subseteq M') = 0.2 - 0.1 = 0.1; P(M') = 1 - P(M) = 1 - 0.3 = 0.7$$

$$\therefore P(T \mid M') = \frac{P(T \subsetneq M')}{P(M')} = \frac{0.1}{0.7} = 0.143$$

UTM

Bayes' Theorem

Suppose that a sample space S is a union of mutually disjoint events $B_1, B_2, B_3, ..., B_n$ suppose A is an event in S, and suppose A and all the B_k have nonzero probabilities, where k is an integer with $1 \le k \le n$. Then

$$P\left(B_{k}|A\right) = \frac{P\left(A|B_{k}\right)P(B_{k})}{\underset{i=1}{\overset{n}{\overset{}{\alpha}}}P\left(A|B_{i}\right)P(B_{i})}$$

OUTM

Example 25

- · At the telemarketing firm, Foo, Raqib and Lee make
- The table shows the percentage of call each caller makes and the percentage of persons who are annoyed and hang up on each caller.

	caller			
	Foo	Raqib	Lee	
% of calls	40	25	35	
% of hang-ups	20	55	30	

OUTM

Example 25 (cont.)

- · Let A denote the event "Foo made the call".
- Let B denote the event "Ragib made the call".
- · Let C denote the event "Lee made the call".
- Let H denote the event "the caller hung up".
- Find
 - ① P(A), P(B), P(C)
 - ② P(H|A), P(H|B), P(H|C)
 - ③ P(A|H), P(B|H), P(C|H)
 - 4 P(H)

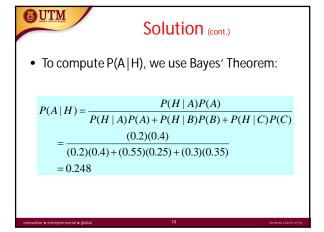
UTMUNITED TRANSPORT MALETER

Solution

- Since Foo made 40% of the calls,
 - P(A) = 0.40
- Similarly, from the table we obtain
 - P(B) = 0.25
 - P(C) = 0.35
- Given that Foo made the call, the table shows that 20% of the persons hung up
 - P(H|A) = 0.20
- Similarly,
 - P(H|B) = 0.55
 - P(H|C) = 0.30

innovative • entrepreneurial • global

viar Litem mov



OUTM

Solution (cont.)

• To compute P(B|H), we use Bayes' Theorem:

$$P(B \mid H) = \frac{P(H \mid B)P(B)}{P(H \mid A)P(A) + P(H \mid B)P(B) + P(H \mid C)P(C)}$$
$$= \frac{(0.55)(0.25)}{(0.2)(0.4) + (0.55)(0.25) + (0.3)(0.35)}$$
$$= 0.426$$

nc -

Solution (cont.)

• To compute P(C|H), we use Bayes' Theorem:

$$P(C \mid H) = \frac{P(H \mid C)P(C)}{P(H \mid A)P(A) + P(H \mid B)P(B) + P(H \mid C)P(C)}$$
$$= \frac{(0.3)(0.35)}{(0.2)(0.4) + (0.55)(0.25) + (0.3)(0.35)}$$
$$= 0.326$$

OUTM

Solution (cont.)

• Compute P(H)

 $P(H) = P(H \mid A)P(A) + P(H \mid B)P(B) + P(H \mid C)P(C)$ = (0.2)(0.4) + (0.55)(0.25) + (0.3)(0.35)= 0.3225

innovative • entrepreneurial • global

OUTM

Example 26

The ELISA test is used to detect antibodies in blood and can indicate the presence of the HIV virus. Approximately 15% of the patients at one clinic have the HIV virus. Among those that have the HIV virus, approximately 95% test positive on the ELISA test. Among those that do not have the HIV virus, approximately 2% test positive on the ELISA test. Find the probability that a patient has the HIV virus if the ELISA test is positive.

innovative • entrepreneurial • globa

www.utm.r

TITM ON THE PROPERTY OF THE PR

Solution

- Let H denote the event "patient has the HIV virus".
- Let *T* denote the event "patient does not have the HIV virus".
- Thus,

$$P(H) = 0.15$$

 $P(T) = 0.85$

• Let Pos denote the feature "tests positive"

$$P(Pos|H) = 0.95$$

 $P(Pos|T) = 0.02$

innovative • entrepreneurial • globa

ww.utm.m

Solution (cont.)

• The probability that a patient has the HIV virus if the ELISA test is positive is $P(H \mid Pos) = \frac{P(Pos \mid H)P(H)}{P(Pos \mid H)P(H) + P(Pos \mid T)P(T)}$ $= \frac{(0.95)(0.15)}{(0.95)(0.15) + (0.02)(0.85)}$ = 0.893

OUTM

Example 26

- Hana, Amir and Dani write a program that schedule tasks for manufacturing toys.
- The table shows the percentage of code written by each person and the percentage of buggy code for each person.

	Coder			
	Hana	Amir	Dani	
% of code	30	45	25	
% of bugs	3	2	5	

• Given that a bug was found, find the probability that it was in the program code written by Dani.

innovative • entrepreneurial • global

ww.utm.my

TO UTM

Solution

- Let
 - H denotes the event of "code written by Hana"
 - A denotes the event of "code written by Amir"
 - D denotes the event of "code written by Dani"
 - B denotes the event of "a bug found in code"
- Since Hana wrote 30% of the code

$$P(H) = 0.3$$

Similarly,

P(A) = 0.45

P(D) = 0.25

innovative • entrepreneurial • global

www.utm

OUTM

Solution (cont.)

• If Hana wrote the code, the table shows that 3% of bugs was found. Thus,

$$P(B|H) = 0.03$$

· Similarly,

P(B | A) = 0.02

P(B | D) = 0.05

The probability that a bug was found in the code written is

 $P(B) = P(B \mid H)P(H) + P(B \mid A)P(A) + P(B \mid D)P(D)$ = (0.03)(0.3) + (0.02)(0.45) + (0.05)(0.25)

= 0.030

TIM

Solution (cont.)

• If a bug was found, the probability that it was in the code written by Dani is

$$P(D \mid B) = \frac{P(B \mid D)P(D)}{P(B)}$$
$$= \frac{(0.05)(0.25)}{0.0305}$$
$$= 0.4098$$

innovative • entrepreneurial • global

www.utm.r

TO UTM

Exercise #5

A department store has three branches that sells clothes. The customers can return the clothes if they bought the clothes in wrong sizes, the clothes have defects or if they simply change their mind. Suppose that out of all of the returned clothes from last month, half are from branch A, 3/10 from branch B and 1/5 from branch C (the details shown in Table 1).

Table 1: Data on returned cloths by branch

Table 1: Data off returned cloths by branch.				
	Branch A	Branch B	Branch C	
Wrong size	3/5	1/3	3/8	
Defects	1/10	1/2	1/4	
Change mind	3/10	1/6	3/8	

innovative • entrepreneurial • global

ww.utm.my

OUTM

Exercise #5 (cont.)

- What are the probabilities that the customers from branch A return the cloth because of they changed their mind?
- i) If it was discovered that the customer return because of wrong size, what is the probability that he or she return it at branch C?
- i) If it was discovered that the customer return because of defects, what is the probability that he or she return it at branch B?

innovative • entrepreneurial • global

....

OUTM

Exercise #6

OUTM

Independent Events

 If the probability of event A does not depend on event B in the sense that P(A | B)=P(A), we say that A and B are independent events.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = P(A)$$

$$P(A \cap B) = P(A).P(B)$$

innovative • entrepreneurial • globa

OUTM

Independent Events (cont.)

- To find the probability of two independent events that occur in sequence, find the probability of each event occurring separately, and then multiply the probabilities.
- This multiplication rule is defined symbolically below.

Multiplication Rule 1: When two events, A and B, are independent, the probability of both occurring is: $P(A \text{ and } B) = P(A) \cdot P(B)$

• Note that multiplication is represented by AND.

innovative • entrepreneurial • global

vww.utm.my

OUTM

Independent Events (cont.)

Some other examples of independent events are:

- Landing on heads after tossing a coin AND rolling a 5 on a single 6-sided die.
- Choosing a marble from a jar AND landing on heads after tossing a coin.
- Choosing a 3 from a deck of cards, replacing it,
 AND then choosing an ace as the second card.
- Rolling a 4 on a single 6-sided die, AND then rolling a 1 on a second roll of the die.

innovative • entrepreneurial • glob

www.utm.i

OUTM

Example 27

A coin is loaded so that the probability of heads is 0.6. Suppose the coin is tossed twice. Although the probability of heads is greater than the probability of tails, there is no reason to believe that whether the coin lands heads or tails on one toss will affect whether it lands heads or tails on other toss. Thus it is reasonable to assume that the results of the tosses are independent.

- i) What is the probability of obtaining **two heads**?
- ii) What is the probability of obtaining one head?
- iii) What is the probability of obtaining no head?
- iv) What is the probability of obtaining at least one head?

innovative • entrepreneurial • globa

ww.utm.n

OUTM

Solution

- The sample space, \$\mathcal{S}\$ consists of four outcomes: { HH, HT, TH, TT}, which are not equally likely
- Let **A** denote the event "obtain head on the first toss".
- Let B denote the event "obtain head on the second toss".
- Then, P(A)=P(B) = 0.6, it is to be assumed that A and B is independent.

innovative • entrepreneurial • global

.........

OUTM

Solution (cont.)

i) What is the probability of obtaining two heads?

$$P(\text{Two heads}) = P(A \ \ B)$$

= $P(A) \cdot P(B)$
= $(0.6)(0.6)$
= $0.36 = 36\%$

innovative • entrepreneurial • global

w.utm.my

TOTAL

Solution (cont.)

ii) What is the probability of obtaining one head?

$$P(One \text{ head}) = P((A \c B') \c (A \c B))$$

$$= P(A) \cdot P(B') + P(A') \cdot P(B)$$

$$= (0.6)(1 - 0.6) + (1 - 0.6)(0.6)$$

$$= (0.6)(0.4) + (0.4)(0.6)$$

$$= 0.48 = 48\%$$

innovative • entrepreneurial • globa

OUTM

Solution (cont.)

iii) What is the probability of obtaining no head?

$$P(no \text{ head}) = P(A' \c B')$$

= $P(A') \cdot P(B')$
= $(1 - 0.6)(1 - 0.6)$
= $(0.4)(0.4)$
= $0.16 = 16\%$

innovative • entrepreneurial • global

OUTM

Solution (cont.)

iv) What is the probability of obtaining **at least one head**?

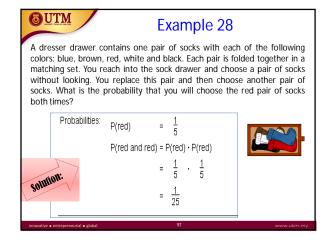
$$P(^{3}1 \text{ head}) = P(one \text{ head}) + P(two \text{ heads})$$

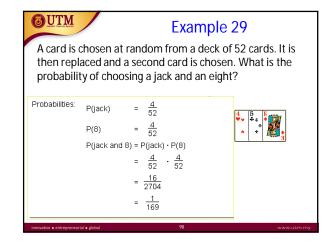
= $(0.48) + (0.36)$
= $0.84 = 84\%$
Or,

 $P(^31 \text{ head}) = 1 - P (no \text{ head})$

=1-(0.16)= 0.84 = 84%

www.utm.n





Example 30

Farid and Azie take a final examination in discrete structure. The probability that Farid passes is 0.70 and the probability that Azie passes is 0.95. Assume that the events "Farid passes" and "Azie passes" are independent. Find the probability that Farid or Azie, or both, passes the final exam.

innovative • entrepreneurial • global 99

Solution

• Let F denotes the event "Farid pass the final exam"

• Let A denotes the event "Azie pass the final exam"

• We are asked to compute $P(F \cup A)$ • $P(F \cup A) = P(F) + P(A) - P(F \cap A)$ • $P(F \cap A) = P(F) \bullet P(A) = (0.70)(0.95) = 0.665$ • $P(F \cup A) = P(F) + P(A) - P(F \cap A)$ = 0.70 + 0.95 - 0.665= 0.985

Example 30

A jar contains 3 Red, 5 Green, 2 Blue and 6 Wellow marbles. A marble is chosen at random from the jar. After replacing it, a second marble is chosen. What is the probability of choosing a Green and a Wellow marble?

$$P(Green) = \frac{5}{16}; \quad P(Yellow) = \frac{6}{16}$$

 $P(Green \text{ and } Yellow) = P(Green) \cdot P(Yellow)$

$$= \frac{5}{16} \cdot \frac{6}{16}$$
$$= \frac{30}{256}$$

innovative • entrepreneurial • global

Example 31

- Halim and Aina take a final examination in Fortran
- The probability that Halim passes is 0.85, and the probability that Aina passes is 0.70.
- Assume that the events "Halim passes the final exam" and "Aina passes the final exam" are independent.
- Find the probability that Halim does not pass.
- Find the probability that both pass.
- Find the probability that both fail.
- Find the probability that at least one passes.

innovative • entrepreneurial • global

www.utm.n

