

© C UTM

Recurrence vs Recursive?

- A recurrence is a recursive description of a function
- Like all recursive structures, a recurrence consists of one or more base cases and one or more recursive cases
- Performance of recursive algorithms typically specified with recurrence equations

Definition

- A recurrence relation is an equation that defines a sequence $\left\{a_{n}, a_{n+1}, \ldots\right\}$ based on a rule that gives the next term as a function of one or more of the previous term in the sequence for all integers n with $n \geq n_{0}$, () a_{0}, a_{1}, \ldots
- A sequence is called a solution of a recurrence relation if it terms satisfy the recurrence relation.

(3) UTM

Simple Recurrence Relation

The simplest form of a recurrence relation is the case where the next term depends only on the immediately previous term.

$$
3,8,13,18,23, \ldots
$$

The above sequence shows a pattern, given initial condition, $a_{1}=3$:

$$
\begin{aligned}
& 3,3+5,8+5,13+5,18+5, \ldots \\
& a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
\end{aligned}
$$

generated from an equation:

$$
a_{n}=a_{n-1}+5, \quad n \geq 2
$$

(3) UTM

n_{th} term of a sequence

Recurrence relation can be used to compute any n-th term of the sequence, given the initial condition, a_{0} :

$$
\begin{gathered}
a_{n}=a_{n-1}+5, n \geq 2 \\
3,8,13,18,23,28, a_{n-1}+5, \ldots \\
a_{2}=a_{1}+5,3+5=8 \\
a_{3}=a_{2}+5,8+5=13 \\
a_{4}=a_{3}+5,13+5=18 \\
\vdots \\
a_{6}=a_{5}+5,23+5=28
\end{gathered}
$$

(0) UTM

Example 2

Given initial condition, $\mathrm{a}_{0}=1$ and recurrence relation:

$$
a_{n}=1+2 a_{n-1}, n \geq 1
$$

First few sequence are:

$$
\begin{aligned}
& a_{1}=1+2(1)=3 \\
& a_{2}=1+2(3)=7 \\
& a_{3}=1+2(7)=15 \\
& \mathbf{1}, \mathbf{3}, \mathbf{7}, \mathbf{1 5}, \mathbf{3 1}, \mathbf{6 3}, \ldots
\end{aligned}
$$

(3) UTM

Example 1

Consider the following sequence:

$$
3,9,27,81,243, \ldots
$$

The above sequence shows a pattern:

$$
\begin{aligned}
& 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, \ldots \\
& a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
\end{aligned}
$$

Recurrence relation is defined by:

$$
a_{n}=3^{n}, n \geq 1
$$

© UTM

 ExerciseFind few sequence for recurrence relation given: (Let's do it up to a_{6})

1) $a_{n}=6 a_{n-1}-9 a_{n-2}$, where $a_{0}=2, a_{1}=3$
2) $a_{n}=2 a_{n-1}-a_{n-2}$, where $a_{0}=5, a_{1}=3$

(3)UTM
 Example 4

For a photo shoot, the staff at a company have been arranged such that there are 10 people in the front row and each row has 7 more people than in the row in front of it. Find the recurrence relation and compute number of staff in the first 5 rows.

(6)UTM

Example 4 -Solution

Notice that the difference between the number of people in successive rows is a constant amount.

This means that the n_{th} term of this sequence can be found using:

$$
a_{n}=a_{n-1}+7, n \geq 2 \text { with } a_{1}=10
$$

(3) UTM

Example 4 -Solution

Number of staff in the first 5 rows:

$$
\begin{aligned}
& a_{1}=10, \\
& a_{2}=a_{1}+7,10+7=17 \\
& a_{3}=a_{2}+7,17+7=24 \\
& a_{4}=a_{3}+7,24+7=31 \\
& a_{5}=a_{4}+7,31+7=38 \\
& \mathbf{1 0 , 1 7 , 2 4 , 3 1 , 3 8}
\end{aligned}
$$

© C TM

Example 5

Find a recurrence relation and initial condition for

$$
1,5,17,53,161,485, \ldots
$$

Solution:

Look at the differences between terms:

$$
4,12,36,108, \ldots
$$

the difference in the sequence is growing by a factor of 3.

(3)UTM
 Example 5 -Solution

However the original sequence is not.

$$
\begin{gathered}
1(3)=3,5(3)=15,17(3)=51, \ldots \\
1,5,17,53,161,485, \ldots
\end{gathered}
$$

It appears that we always end up with 2 less than the next term.

So, the recurrence relation is defined by:
$a_{n}=3\left(a_{n-1}\right)+2, n \geq 1$, with initial condition, $a_{0}=1$

(3) UTM

Example 6

A depositor deposits RM 10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years? Let P_{n} denote the amount in the account after n years.

(3) UTM

Example 6 - Solution

Derive the following recurrence relation:

$$
P_{n}=P_{n-1}+0.05 P_{n-1}=1.05 P_{n-1}
$$

Where, $\mathbf{P}_{\mathbf{n}}=$ Current balance and $\mathbf{P}_{\mathrm{n}-1}=$ Previous year balance and 0.05 is the compounding interest.

(3) UTM

Example 6 - Solution

Let us use this formula to find P_{30} under the initial condition $\mathrm{P}_{0}=10,000$:
$P_{30}=(1.05)^{30}(10,000)=43,219.42$
After 30 years, the account contains RM 43,219.42.

Exercise

Consider the following sequence:

$1,5,9,13,17$

Find the recurrence relation that defines the above sequence.

() UTM

Exercise

A basketball is dropped onto the ground from a height of 15 feet. On each bounce, the ball reaches a maximum height 55% of its previous maximum height.
a)W rite a recursive formula, a_{n}, that completely defines the height reached on the $n_{\text {th }}$ bounce, where the first term in the sequence is the height reached on the ball's first bounce.
b) How high does the basketball reach after the $4_{\text {th }}$ bounce? Give your answer to two decimal places.

