(3) UTM

DISCRETE STRUCTURES

 CHAPTER 2 PART 1
RELATIONS

(3) UTM

Example 1

Let $A=\{1,2,3,4$ \}and $B=\{p, q, r\}$
$R=\{(1, q),(2, r),(3, q),(4, p)\}$
$R \subseteq A \times B$
R is the relation from A to B
1 Rq (1 is related to q)
3Rp (1 is not related to p)

Definition

- Let A and B be two sets.
- A binary relation, or simply a relation R from set A to set B is a subset of the cartesian product $A \times B$
$a \in A, b \in B,(a, b) \in A \times B$ and $R \subseteq A \times B$
- If $(a, b) \in R$, we say a is related to b by R write as $\operatorname{Rb} \quad(a R b \leftrightarrow(a, b) \in R)$

(3) UTM
 Relations

- Binary relations: xRy

On sets $x \in X \quad y \in Y \quad R \subseteq X \times Y$

- Example:
"less than" relation from $A=\{0,1,2\}$ to $B=\{1,2,3\}$
Use traditional notation
$0<1,0<2,0<3,1<2,1<3,2<3$
Or use set notation
$A \times B=\{(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$
$R=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$
Or use Arrow Diagrams

(3) UTM

Arrow Diagram

$R=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$

Example 2

A $=\{$ New Delhi, Ottawa, London, Paris, Washington $\}$
B = \{Canada, England, India, France, United States $\}$ Let $x \in A, y \in B$.
Define the relation between x and y by " x is the capital of y "
$R=\{$ (New Delhi, India), (Ottawa, Canada), (London, England), (Paris, France), (Washington, United States) $\}$

Definition

- If R is a relation from set A into itself, we say that R is a relation on A.

$$
a \in A, b \in A(a, b) \in A \times A \text { and } R \subseteq A \times A
$$

- Example

Let $A=(1,2,3,4,5)$ and R be defined by $a, b \in A$, $a R b \leftrightarrow b-a=2$

$$
R=\{(1,3),(2,4),(3,5)\}
$$

(3) UTM

Exercise 1

Write the relation R as $(x, y) \in R$
(i) The relation R on $\{1,2,3,4\}$ defined by $(x, y) \in R$ if $x^{2} \geq y$
(ii) The relation R on $\{1,2,3,4,5\}$ defined by $(x, y) \in R$ if 3 divides $x-y$

(3) UTM

Domain and Range

Let R, a relation from A to B.
The set, $\{a \in A \mid(a, b) \in R$ for some $b \in B\}$
is called the domain of R.
The set, $\{b \in B \mid(a, b) \in R$ for some $a \in A\}$ is called the range of R.

Example 3

Let R be a relation on $X=\{1,2,3,4\}$
defined by $(\mathrm{x}, \mathrm{y}) \in R$ if $\mathrm{x} \leq \mathrm{y}$, and $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Then,
$R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3)$,
(2,4), (3,3), (3,4), (4,4)\}
The domain and range of R are both equal to X.

(3) UTM

Example 4

Let $X=\{2,3,4\}$ and $Y=\{3,4,5,6,7\}$
If we define a relation R from X to Y by,
(x, y) $\in R$ if y / x (with zero remainder)
We obtain,
$R=\{(2,4),(2,6),(3,3),(3,6),(4,4)\}$
The domain of R is $\{2,3,4\}$
The range of R is $\{3,4,6\}$

Example 4(cont)

$R=\{(2,4),(2,6),(3,3),(3,6),(4,4)\}$

Arrow diagram

(ㅇ) UTM

Exercise 2

Find range and domain for:
(i) The relation $\mathrm{R}=\{(1,2),(2,1),(3,3),(1,1),(2,2)\}$ on $X=\{1,2,3\}$
(ii) The relation R on $\{1,2,3,4\}$ defined by $(x, y) \in R$ if $x^{2} \geq y$

© UTM

Diagraph

An informative way to picture a relation on a set is to draw its digraph.

* Let R be a relation on a finite set A .
* Draw dots (vertices) to represent the elements of A.
* If the element $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$, draw an arrow (called a directed edge) from a to b

©(0UTM Example $/$

Find the relation determined by digraph below

Since $a_{i} R a_{j}$ if and only if there is an edge from a_{i} to a_{j}, so
$R=\{(1,1),(1,3),(2,3),(3,2),(3,3),(4,3)\}$

© UTM

Exercise 3

Draw the diagraph of the relation.
(i) $R=\{(a, c),(b, b),(b, c)\}$
(ii) The relation R on $\{1,2,3,4\}$ defined by $(x, y) \in R$ if $x^{2} \geq y$

(0) UTM

Exercise 4

Write the relation as a set of ordered pair.

(3) UTM

M atrices of Relations

- Let $M_{R}=\left[m_{i}\right]_{1 \times p}$, be the Boolean $\mathrm{n} \times \mathrm{p}$ matrix

$$
\begin{gathered}
M_{R}=\left[\begin{array}{ccccc}
m_{11} & m_{12} & . . & . . & m_{1 p} \\
m_{21} & m_{22} & . . & . . & m_{2 p} \\
: & : & . . & . . & : \\
: & : & . . & . . & : \\
m_{n 1} & m_{n 2} & . . & . . & m_{n p}
\end{array}\right] \\
m_{i j}=\left\{\begin{array}{ccc}
1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

A matrix is a convenient way to represent a relation R from A to B.

- Label the rows with the elements of A (in some arbitrary order)
- Label the columns with the elements of B (in some arbitrary order)

() UTM

Example 9

The matrix of the relation R from $\{2,3,4\}$
to $\{5,6,7,8\}$ defined by
$x R y$ if x divides y

$$
2\left(\begin{array}{llll}
5 & 6 & 7 & 8 \\
3 \\
4
\end{array}\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right.
$$

Let $A=\{a, b, c, d\}$
Let R be a relation on A.
$R=\{(a, a),(b, b),(c, c),(d, d),(b, c),(c, b)\}$

$$
M_{R}=\begin{gathered}
a \\
a \\
b \\
c \\
d
\end{gathered}\left(\begin{array}{llll}
1 & b & c & d \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example 10

An airline services the five cities $c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5}. Table below gives the cost (in dollars) of going from c_{i} to c_{j}. Thus the cost of going from c_{1} to c_{3} is RM 100, while the cost of going from C_{4} to C_{2} is RM 200

T0 from	C_{1}	c_{2}	C_{3}	c_{4}	c_{5}	
C_{1}		140	100	150	200	
C_{2}	190		200	160	220	
C_{3}	110	180		190	250	
C_{4}	190	200	120		150	
C_{5}	200	100	200	150		

If the relation R on the set of cities
$A=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}: c_{i} R c_{j}$ if and only if the
cost of going from c_{i} to c_{j} is defined and less than or equal to RM 180.
i) Find R.
ii) Matrices of relations for R

(3) UTM

Exercise 5

Let $A=\{1,2,3,4\}$ and R is a relation from A to
A.

Suppose $R=\{(1,2),(1,3),(1,4),(2,3),(2,4)$,
$(3,4)\}$

- What is R (represent)?
- What is matrix representation of R?

Exercise 6

Let $A=\{1,4,5\}$ and let R be given by the digraph shown below. Find M_{R} and R

© C UTM

In degree and out degree
If R is a relation on a set A and $a \in A$, then the in-degree of a (relative to relation R) is the number of $b \in A$ such that $(b, a) \in R$.

The out degree of a is the number of $b \in A$ such that $(a, b) \in R$.

M eaning that, in terms of the digraph of R, is that the in-degree of a vertex is
"the number of edges terminating at the vertex"
The out-degree of a vertex is
" the number of edges leaving the vertex"

© UTM
 Solution

	a	b	c	d
In-degree	2	3	1	1
Out-degree	1	1	3	2

© UTM

Reflexive Relations

- Reflexive
- A Relation R on set A is called reflexive if every $a \in A$ is related to itself $\quad O R$
- A relation R on a set X is called reflexive if all pair $(x, x) \in R ; \forall x: x \in X$
- Irreflexive
- A relation R on a set A is irreflexive if $x P x$ or $(x, x) \notin R ; \forall x: x \in X$
- Not Reflexive
- A Relation R is not reflexive if at least one pair of

Example 11

Let $A=\{a, b, c, d\}$, and let R be the relation on A that has the matrix (given below)

$$
M_{R}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Construct the digraph of R , and list in-degrees and out-degrees of all vertices.

(3) UTM

Exercise 7

Let $A=\{1,4,5\}$ and let R be given by the digraph shown below. list in-degrees and out-degrees of all vertices.

(C) UTM

Example 12

The relation R on $X=\{1,2,3,4\}$ defined by $(x, y) \in R$ if $x \leq y, x, y \in X$ is a reflexive relation.

For each element $x \in X,(x, x) \in R$
$(1,1),(2,2),(3,3),(4,4)$ are each in R.
The relation $R=\{(a, a),(b, c),(c, b),(d, d)\}$ on $X=\{a, b, c$, d\} is not reflexive.

This is because $b \in X$, but $(b, b) \notin R$. Also $c \in X$, but $(c, c) \notin R$

(3) UTM

Reflexive Relations

The relation R is reflexive if and only if the matrix of relation has l's on the main diagonal.
example

© C UTM

Reflexive Relations

The relation R is not reflexive.

$$
\begin{aligned}
& \\
& a \\
& a \\
& b \\
& c \\
& d
\end{aligned}\left(\begin{array}{llll}
1 & b & c & d \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& \\
& \begin{array}{l}
b \in X \\
(b, b) \notin R
\end{array} \\
&
\end{aligned}
$$

(3) UTM

Reflexive Relations

The relation R is irreflexive if and only if the matrix relation have all 0's on its main diagonal

(3) UTM

Exercise 8

- Consider the following relations on the set \{1,2,3\}:
$R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)\}$
$R_{2}=\{(1,1),(1,3),(2,2),(3,1)\}$
$\mathrm{R}_{3}=\{(2,3)\}$
$\mathrm{R}_{4}=\{(1,1)\}$
Which of them are reflexive?

© UTM

Exercise 9

(i) Let R be the relation on $\mathrm{X}=\{1,2,3,4\}$ defined by $(x, y) \in R$ if $x \leq y, x, y \in X$. Determine whether R is a reflexive relation.
(ii) The relation R on $X=\{a, b, c, d\}$ given by the below diagraph. Is R a reflexive relation?

(3)UTM

Symmetric Relations

A relation R on a set X is called symmetric if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

$$
\forall x, y \in X,(x, y) \in R \rightarrow(y, x) \in R
$$

Let M be the matrix of relation R.

The relation R is symmetric if and only if for all i and j, the $i j$-th entry of M is equal to the $j i-$ th entry of M.

© UTM

Symmetric Relations

The digraph of a symmetric relation has the property that whenever there is a directed edge from v to w, there is also a directed edge from w to v.
v

(0) UTM

Exercise 10

Let $A=\{1,2,3,4)$. Construct the matrix of relation of R. Then, determine whether the relation is reflexive, not reflexive or irreflexive.
(i) $\mathrm{R}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3)$, $(4,4))$
(ii) $R=\{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4)\}$
(iii) $R=\{(1,2),(1,3),(3,1),(1,1),(3,3),(3,2),(1,4),(4,2)$, $(3,4)\}$
(iv) $R=\{(1,2),(1,3),(3,2),(1,4),(4,2),(3,4)\}$

(0) UTM

symmetric Relations

The matrix of relation M_{R} is symmetric if $M_{R}=M_{R}{ }^{\top}$

$$
\mathrm{M}_{\mathrm{R}}=\begin{aligned}
& \\
& a \\
& a \\
& b \\
& c
\end{aligned}\left(\begin{array}{llll}
1 & b & c & d \\
d & 0 & 0 & d \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=M_{R}^{\top}
$$

© C UTM

Example 13

- The relation $R=\{(a, a),(b, c),(c, b),(d, d)\}$ on $X=\{a, b, c, d\}$

$$
\begin{aligned}
& (b, c) \in R \\
& (c, b) \in R
\end{aligned}
$$

(ㅈ) UTM

Antisymmetric

A relation R on set A is antisymmetric if $a \neq b$, whenever $a R b$, then $b R$ Ra. In other word if whenever $a R b$, then $b R a$ then it implies that $a=b$

$$
\forall a, b \in A,(a, b) \in R \wedge a \neq b \rightarrow(b, a) \notin R
$$

Or
$\forall a, b \in A,(a, b) \in R \wedge(b, a) \in R \rightarrow a=b$

(©) UTM

Antisymmetric Relations

- $\operatorname{Matrix} M_{R}=\left[M_{i j}\right]$ of an antisymmetric relation R satisfies the property that if $i \neq j$, then $m_{i j}=0$ or $\mathrm{mj}=0$
- If R is antisymmetric relation, then for different vertices i and j there cannot be an edge from vertex i to vertex j and an edge from vertex j to vertex i
- At least one directed relation and one way

(3) UTM

Example 15

- The relation R on $X=\{1,2,3,4\}$ defined by,
$(x, y) \in R \quad$ if $x \leq y, x, y \in X$
$(1,2) \in R$
1
2
3
4 $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$ antisymmetric

(3) UTM

Asymmetric

Arelation is asymmetric if and only if it is both antisymmetric and irreflexive.

The matrix $M_{R=}\left[m_{i j}\right]$ of an asymmetric relation R satisfies the property that
If $m_{i j}=1$ then $m_{j i}=0$
$m_{i i}=0$ for all i (the main diagonal of matrix M_{R} consists entirely of O's or otherwise)
© UTM

Digraph

- If R is asymmetric relation, then the digraph of R cannot simultaneously have an edge from vertex ito vertex j and an edge from vertex j to vertex i
- All edges are "one way street" and no loop at every vertex

© UTM

Not Symmetric

- Let R be a relation on a set A. Then R is called not symmetric, if for all $a, b \in A$, if $(a, b) \in R$, there exist (b, a) $\notin R$.

$$
\exists a, b \in A,(a, b) \in R \rightarrow(b, a) \notin R
$$

(3) UTM

Example 17

- Let R be the relation on $A=\{1,2,3\}$ defined by $(a, b) \in R$ if $a>b, a, b \in A$ is an asymmetric relation because,
$(2,1) \in R$ but $(1,2) \notin R$
$(3,1) \in R$ but $(1,3) \notin R$
$(3,2) \in R$ but $(2,3) \notin R$
$(1,1) \notin R,(2,2) \notin R,(3,3) \notin R$

(3) UTM

Not Symmetric AND not antisymmetric

- Let R be a relation on a set A. Then R is called not symmetric and not antisymmetric, if for all $a, b \in A$, if $(a, b) \in R$, there exist $(b, a) \notin R$ and if $(a, b) \in R$, there exist $(b, a) \in R$.

$$
\begin{gathered}
\exists a, b \in A,(a, b) \in R \rightarrow(b, a) \in R \\
\text { AND } \\
\exists a, b \in A,(a, b) \in R \rightarrow(b, a) \notin R
\end{gathered}
$$

(3) UTM

Example 19

- The relation $R=\{(a, a),(b, c),(c, b),(d, d)\}$ on $X=\{a, b, c, d\}$ on $A=\{a, b, c\}$ is not symmetric and not antisymmetric relation because there is,
$(a, c),(c, a) \in R$ and also $(b, a) \in R$ but $(a, b) \notin R$

© UTM

Example 20

1. Let $A=Z$, the set of integers and let $R=\{(a, b) \in A \times A \mid a<b\}$. So that R is the relation "less than".
Is R symmetric, asymmetric or antisymmetric?
2. Let $A=\{1,2,3,4\}$ and let $R=\{(1,2),(2,2),(3,4)$, $(4,1)\}$
Determine whether R symmetric, asymmetric or antisymmetric.

(0)UTM

Solution

Question 1

- Symmetric : If $a<b$, then it is not true that $b<a, ~ s o R$ is not symmetric
- Assymetric : If $a<b$ then $b>a$ (b is greater than a), so R is assymetric
- Antisymmetric : If $a \neq b$, then either $a>b$ or $b>a$, so R is antisymmetric

Question 2

- R is not symmetric since $(1,2) \in R$, but $(2,1) \notin R$
- R is not asymmetric , since $(2,2) \in R$
- R is antisymmetric, since $a \neq b$, either $(a, b) \notin R$ or $(b, a) \notin R$

Exercise 14

- Consider the following relations on the set \{1,2,3\}:
$R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)\}$
$\mathrm{R}_{2}=\{(1,1),(1,3),(2,2),(3,1)\}$
$\mathrm{R}_{3}=\{(2,3)\}$
$\mathrm{R}_{4}=\{(1,1)\}$
Which of them are symmetric?
Which of them are antisymmetric?

(3) UTM

Exercise 15

Let $A=\{1,2,3,4)$. Construct the matrix of relation of R. Then, determine whether the relation is symmetric, assymetric, antisymmetric, not symmetric or not antisymmetric.
(i) $\quad \mathrm{R}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4))$
(ii) $R=\{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4)\}$
(iii) $R=\{(1,2),(1,3),(1,1),(3,3),(3,2),(1,4),(4,2),(3,4)\}$

(0) UTM
 Transitive Relations

- A relation R on set A is transitive if for all $a, b \in A$, $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$
- In the diagraph of R, R is a transitive relation if and only if there is a directed edge from one vertex a to another vertex b, an if there exits a directed edge from vertex b to vertex c, then there must exists a directed edge from a to c

© C UTM

Transitive Relations

The matrix of the relation M_{R} is transitive if

$$
M_{R} \otimes M_{R}=M_{R}
$$

\otimes is the product of boolean

(3) UTM

Example 22

The relation R on $A=\{1,2,3\}$ defined by $(a, b) \in R$ if $a \leq b, a, b \in A$, is a transitive. The matrix of relation M_{R},

$$
M_{R}=\frac{1}{1} \begin{array}{ccc}
1 & 2 & 3 \\
2
\end{array}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Note that,(1,2) and $(2,3) \in R,(1,3) \in R$

Example 23

The relation R on $A=\{a, b, c, d\} \mid S r=\{(a, a),(b, b),(c, c),(d, d),(a, c)$, (c, b)) is not transitive. The matrix of relation M_{R},

Note that, (a, c) and $(c, b) \in R,(a, b) \notin R$

(ㅈ)UTM

Example 24

Let R be a relation on $A=\{1,2,3\}$ is defined by $(a, b) \in R$ if $a \leq b$, $a, b \in A$. Find R. Is R a transitive relation? Solution:
$R=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
R is a transitive relation because
$(1,2)$ and $(2,2) \in R,(1,2) \in R$
$(1,2)$ and $(2,3) \in R,(1,3) \in R$ $(1,3)$ and $(3,3) \in R,(1,3) \in R$
$(2,2)$ and $(2,3) \in R,(2,3) \in R$
$(2,3)$ and $(3,3) \in R,(2,3) \in R$ $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \otimes\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$

() UTM

Equivalence Relations

Relation R on set A is called an equivalence relation if it is a reflexive, symmetric and transitive.

Example 25

Let $R=\{(1,1),(1,3),(2,2),(3,1),(3,3)\}$ on $\{1,2,3\}$, the matirx of the relation M_{R},

All the main diagonal matrix elements are 1 and the matris is reflexive.

(ㅇ)UTM

Equivalence Relations

Example 25(Cont.)

The transpose matrix $\mathrm{M}_{\mathrm{R}}, M_{R}^{T}$ is equal to M_{R}, so R is symmetric

The product of boolean show that the matrix is transitive.

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

() UTM

Exercise 17

The relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(x, y) \in R$ if $x+y \leq 6$
(i) List the elements of R
(ii) Find the domain of R
(iii) Find the range of R
(iv) Is the relation of R refelxive, symmetric, assymmetric, antisymmetric, transitive, and/or equivalence relation or partial order?

Exercise 18

The relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(x, y) \in R$ if 3 divides $x-y$
(i) List the elements of R
(ii) Find the domain of R
(iii) Find the range of R
(iv) Is the relation of R refelxive, symmetric, assymmetric, antisymmetric, transitive, and/or equivalence relation or partial order?

Exercise 19

The relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(x, y) \in R$ if $x=y-1$
(i) List the elements of R
(ii) Find the domain of R
(iii) Find the range of R
(iv) Is the relation of R refelxive, symmetric, assymmetric, antisymmetric, transitive, and/or equivalence relation or partial order?

