

UTM

QUANTIFIERS

- M ost of the statements in mathematics and computer science are not described properly by the propositions.
- Since most of the statements in mathematics and computer science use variables, the system of logic must be extended to include statements with the variables.

UTM

QUANTIFIERS
 (cont.)

- Let $\mathrm{P}(x)$ is a statement with variable x and A is a set.
- P a propositional function or also known as predicate if for each x in $\mathrm{A}, \mathrm{P}(x)$ is a proposition.
- Set A is the domain of discourse of P.
- Domain of discourse ->the particular domain of the variable in a propositional function.

UTM

QUANTIFIERS $_{\text {ant }}$

- A predicate is a statement that contains variables.
- Example:

$$
\begin{aligned}
& P(x): x>3 \\
& Q(x, y): x=y+3 \\
& R(x, y, z): x+y=z
\end{aligned}
$$

© C UTM

Example

- $x^{2}+4 x$ is an odd integer
(domain of discourse is set of positive numbers).
- $x^{2}-x-6=0$
(domain of discourse is set of real numbers).
- UTM is rated as Research University in M alaysia (domain of discourse is set of research university in M alaysia).

UTM

QUANTIFIERS $_{\text {(atx) }}$

- A predicate becomes a proposition if the variable(s) contained is(are)
- Assigned specific value(s)
- Quantified

Example

- $P(x): x>3$.

What are the truth values of $P(4)$ - (true) and $P(2)$ (false)?

- $Q(x, y): x=y+3$.

What are the truth values of $\mathrm{Q}(1,2)$ and $\mathrm{Q}(3,0)$?

UTM

Propositional functions 2

- Let $\mathrm{P}(\mathrm{x})=$ " x is a multiple of 5 "
- For what values of x is $P(x)$ true?
- Let $\mathrm{P}(\mathrm{x})=\mathrm{x}+1>\mathrm{x}$
- For what values of x is $P(x)$ true?
- Let $\mathrm{P}(\mathrm{x})=\mathrm{x}+3$
- For what values of x is $P(x)$ true?

QUANTIFIERS

- Two types of quantifiers:
- Universal
- Existential

UTM

QUANTIFIERS

- Let A be a propositional function with domain of discourse B. The statement for every $x, \mathrm{~A}(x)$
is universally quantified statement
- Symbol \forall called a universal quantifier is used "for every".
- Can be read as "for all", "for any".

UTM

Universal quantifiers 1

- Represented by an upside-down A: \forall
- It means "for all"
- Let $P(x)=x+1>x$
- We can state the following:
$-\forall x P(x)$
- English translation: "for all values of $\mathrm{x}, \mathrm{P}(\mathrm{x})$ is true"
- English translation: "for all values of $x, x+1>x$ is true"

(3) UTM

QUANTIFIERS
 (cont.)

- The statement can be written as

$\forall x \mathrm{~A}(x)$

- Above statement is true if $\mathrm{A}(x)$ is true for every x in B (false if $A(x)$ is false for at least one x in B).
OR In order to prove that a universal quantification is true, it must be shown for ALL cases
In order to prove that a universal quantification is false, it must be shown to be false for only ONE case
- A value x in the domain of discourse that makes the statement $\mathrm{A}(x)$ false is called a counterexample to the statement.

UTM

Example

- Let the universally quantified statement is

$$
\forall x\left(x^{2} \geq 0\right)
$$

- Domain of discourse is the set of real numbers.
- This statement is true because for every real number x, it is true that the square of x is positive or zero.

©

Example

- Let the universally quantified statement is

$$
\forall x\left(x^{2} \leq 9\right)
$$

- Domain of discourse is a set $B=\{1,2,3,4\}$
- When $x=4$, the statement produce false value.
- Thus, the above statement is false and the counterexample is 4 .

UTM

QUANTIFIERS
 (cont.)

- Easy to prove a universally quantified statement is true or false if the domain of discourse is not too large.
- What happen if the domain of discourse contains a large number of elements?
- For example, a set of integer from 1 to 100 , the set of positive integers, the set of real numbers or a set of students in Faculty of Computing. It will be hard to show that every element in the set is true.

Use existential quantifier!!

UTM

QUANTIFIERS
 (cont.)

- Let A be a propositional function with domain of discourse B. The statement

There exist $x, \mathrm{~A}(x)$
is existentially quantified statement

- Symbol \exists called an existential quantifier is used "there exist".
- Can be read as "for some", "for at least one".

UTM

QUANTIFIERS (cont.)

- The statement can be written as

$$
\exists x \mathrm{~A}(x)
$$

- Above statement is true if $\mathrm{A}(x)$ is true for at least one x in B (false if every x in B makes the statement $\mathrm{A}(x)$ false).
- Just find one x that makes $\mathrm{A}(x)$ true!

(3) UTM

Example

- Let the existentially quantified statement is

$$
\exists x\left(\frac{x}{x^{2}+1}=\frac{2}{5}\right)
$$

- Domain of discourse is the set of real numbers.
- Statement is true because it is possible to find at least one real number x to make the proposition true.

© UTM

- For example, if $x=2$, we obtain the true proposition as below

$$
\left(\frac{x}{x^{2}+1}=\frac{2}{5}\right)=\left(\frac{2}{2^{2}+1}=\frac{2}{5}\right)
$$

(0) UTM

Negation of Quantifiers

- Distributing a negation operator across a quantifier changes a universal to an existential and vice versa.

$$
\begin{aligned}
& \neg(\forall x \mathrm{P}(x)) ; \exists x \neg \mathrm{P}(x) \\
& \neg(\exists x \mathrm{P}(x)) ; \forall x \neg \mathrm{P}(x)
\end{aligned}
$$

Example

- Let $\mathrm{P}(x)=x$ is taking Discrete Structure course with the domain of discourse is the set of all students.
- $\forall x \mathrm{P}(x)$: All students are taking Discrete Structure course.
- $\exists x \mathrm{P}(x)$: There is some students who are taking Discrete Structure course.

(0) UTM

$$
\neg(\exists x \mathrm{P}(x)) ; \forall x \neg \mathrm{P}(x)
$$

$\neg \exists x \mathrm{P}(x)$: None of the students are taking Discrete Structure course.
$\forall x \neg \mathrm{P}(x)$: All students are not taking Discrete Structure course.

UTM

$$
\neg(\forall x \mathrm{P}(x)) ; \exists x \neg \mathrm{P}(x)
$$

$\forall x \mathrm{P}(x)$: Not all students are taking Discrete Structure course.
$\exists x-\mathrm{P}(x)$: There is some students who are not taking Discrete Structure course

(3) UTM

Translating from English

- Consider "For every student in this class, that student has studied calculus"
- Rephrased: "For every student x in this class, x has studied calculus"
- Let $C(x)$ be " x has studied calculus"
- Let $S(x)$ be " x is a student"
- $\forall x C(x)$
- True if the universe of discourse is all students in this class

UTM

Translating from English 2

- What about if the unvierse of discourse is all students (or all people?)
- $\forall x(S(x) \wedge C(x))$
- This is wrong! Why? (because this statement says that all people are students in this and have studied calculus)
$-\forall x(S(x) \rightarrow C(x))$

(3) UTM

Translating from English 3

- Consider:
- "Some students have visited M exico"
- "Every student in this class has visited Canada or Mexico"
- Let:
$-S(x)$ be " x is a student in this class"
$-M(x)$ be " x has visited Mexico"
- C(x) be "x has visited Canada"

UTM

Translating from English 4

- Consider: "Some students have visited M exico"
- Rephrasing: "There exists a student who has visited M exico"

$$
\exists x M(x)
$$

- True if the universe of discourse is all students
- What about if the universe of discourse is all people?
$\exists x(S(x) \wedge M(x))$
$-\exists x(S(x) \rightarrow M(x))$
- This is wrong! Why?
suppose someone not in the class $=\mathrm{F}$ - - T or F - $>$, both make the statement true

(6)UTM

Translating from English 5

- Consider: "Every student in this class has visited Canada or M exico"
- $\forall x(M(x) \vee C(x)$
- When the universe of discourse is all students
- $\forall x(\mathrm{~S}(\mathrm{x}) \rightarrow(\mathrm{M}(\mathrm{x}) \vee \mathrm{C}(\mathrm{x}))$
- When the universe of discourse is all people

UTM

Proof Techniques

- Mathematical systems consists:
- Axioms: assumed to be true.
- Definitions: used to create new concepts.
- Undefined terms: some terms that are not explicitly defined.
- Theorem

Proof Techniques

- Theorem
-Statement that can be shown to be true (under certain conditions)
-Typically stated in one of three ways:
- As Facts
- As Implications
- As Bi-implications

Proof Techniques

(cont.)

Direct Proof (Direct Method)

-Proof of those theorems that can be expressed in the form $\forall x(\mathrm{P}(x) \rightarrow \mathrm{Q}(x))$, D is the domain of discourse.
-Select a particular, but arbitrarily chosen, member a of the domain D.
-Show that the statement $\mathrm{P}(a) \rightarrow \mathrm{Q}(a)$ is true. (Assume that $\mathrm{P}(\mathrm{a})$ is true).
-Show that $\mathrm{Q}(a)$ is true.
-By the rule of Universal Generalization (UG), $\forall x(\mathrm{P}(x) \rightarrow \mathrm{Q}(x))$ is true.

UTM

Example

For all integer x, if x is odd, then x^{2} is odd
Or $\mathrm{P}(x)=$ is an odd integer

$$
\mathrm{Q}(x)=x^{2} \text { is an odd integer }
$$

$$
\forall x(P(x) \rightarrow Q(x))
$$

the domain of discourse is set Z of all integer.
Can verify the theorem for certain value of x.

$$
x=3, x^{2}=9 ; \text { odd }
$$

UTM

Example

- Or show that the square of an odd number is an odd number
- Rephrased: if n is odd, the n^{2} is odd

Example ${ }_{\text {cont) }}$

- a is an odd integer

$$
\begin{aligned}
& \Rightarrow \quad a=2 n+1 \Rightarrow a^{2}=(2 n+1)^{2} \\
& \Rightarrow \quad a^{2} \text { for some integer } \mathbf{n} \\
& \Rightarrow \quad a^{2}=4 n^{2}+4 n+1 \\
& \Rightarrow \quad a^{2}=2\left(2 n^{2}+2 n\right)+1 \\
& \Rightarrow \quad a^{2}=2 m+1 \Rightarrow \text { where } \mathbf{m}=2 n^{2}+2 n \text { is an integer } \\
& \Rightarrow \quad a^{2} \Rightarrow \text { is an odd integer }
\end{aligned}
$$

UTM

Proof Techniques
 (cont.)

- Indirect Proof

- The implication $p \rightarrow q$ is equivalent to the implication ($q \rightarrow \rightarrow-p$) (contrapositive)
- Therefore, in order to show that $p \rightarrow q$ is true, one can also show that the implication ($-q \rightarrow-p$) is true.
- To show that ($\neg q \rightarrow \neg p)$ is true, assume that the negation of q is true and prove that the negation of p is true.

UTM

Example

$P(n): n^{2}+3$ is an odd number
$\mathrm{Q}(\mathrm{n})$: n is even number

$$
\begin{gathered}
\forall n(P(n) \rightarrow Q(n)) \\
P(n) \rightarrow Q(n) \equiv \neg Q(n) \rightarrow \neg P(n)
\end{gathered}
$$

- $\neg \mathrm{Q}(\mathrm{n})$ is true , n is not even (n is odd), so $\mathrm{n}=2 \mathrm{k}+1$

$$
\begin{aligned}
& n^{2}+3=(2 k+1)^{2}+3 \\
& =4 k^{2}+4 k+1+3 \\
& =4 k^{2}+4 k+4 \\
& =2\left(2 k^{2}+2 k+2\right)
\end{aligned}
$$

UTM

Example

$$
\begin{aligned}
& n^{2}+3=(2 k+1)^{2}+3 \\
& =4 k^{2}+4 k+1+3 \\
& =4 k^{2}+4 k+4 \\
& =2\left(2 k^{2}+2 k+2\right) \\
& t=2 k^{2}+2 k+2 \Longrightarrow \text { t is integer } \\
& n^{2}+3=2 t
\end{aligned}
$$

$n^{2}+3$ is an even integer, thus $\neg P(n)$ is true

UTM

Which to use

- When do you use a direct proof versus an indirect proof?
- If it's not clear from the problem, try direct first, then indirect second
- If indirect fails, try the other proofs

UTM

Example of which to use

Prove that if n is an integer and $\mathrm{n}^{3}+5$ is odd, then n is even

- Via direct proof
$-n^{3}+5=2 k+1$ for some integer k (definition of odd numbers)
$-\mathrm{n}^{3}=2 \mathrm{k}+6$
$-n=\sqrt[3]{2 k+6}$
- Umm...
- So direct proof didn't work out. Next up: indirect proof

(3) UTM

Example of which to use

- Prove that if n is an integer and $n^{3}+5$ is odd, then n is even
- Via indirect proof
- Contrapositive: If n is odd, then $n^{3}+5$ is even
- Assume n is odd, and show that $n^{3}+5$ is even
- $n=2 k+1$ for some integer k (definition of odd numbers)
$-n^{3}+5=(2 k+1)^{3}+5=8 k^{3}+12 k^{2}+6 k+6=2\left(4 k^{3}+6 k^{2}+3 k+3\right)$
- As $2\left(4 k^{3}+6 k^{2}+3 k+3\right)$ is 2 times an integer, it is even

UTM

Proof Techniques
 (cont.)

Proof by Contradiction

Assume that the hypothesis is true and that the conclusion is false and then, arrive at a contradiction.

Proposition if P then Q
Proof. Suppose P and \sim
Since we have a contradiction, it must be that Q is true

(3) UTM

Example

Prove that there are infinitely many prime numbers. Proof:
-Assume there are not infinitely many prime numbers, therefore they are can be listed, i.e. $p_{1}, p_{2}, \ldots, p_{n}$ -Consider the number $q=p_{1} \times p_{2} \times \ldots \times p_{n}+1$.

- q is either prime or not divisible, but not listed above.

Therefore, q is a prime. However, it was not listed.
-Contradiction! Therefore, there are infinitely many primes numbers.

UTM

Example

- For all real numbers x and y, if $x+y \geq 2$, then either $x \geq 1$ or $\mathrm{y} \geq 1$.

Proof

- Suppose that the conclusion is false. Then

$$
x<1 \text { and } y<1
$$

Add these inequalities, $x+y<1+1=2(x+y<2)$

- Contradiction
- Thus we conclude that the statement is true.

UTM

Example

Suppose $a \in Z$. If a^{2} is even, then a is even
Proof

- Contradiction: Suppose a^{2} is even and a is not even.
- Then a^{2} is even, and a is odd
- So $a=2 c+1$, then $a^{2}=(2 c+1)^{2}=4 c^{2}+4 c+1=2\left(2 c^{2}+2 c\right)+1$
- Thus a^{2} is even and a^{2} is not even, a contradiction
- The original supposition that is a^{2} even and a is odd could not be true

