

SCSI1013: Discrete Structures

CHAPTER 1

Part 3: Fundamental and Elements of Logic

innovative • entrepreneurial • globa

2015/2016-Sem.1

www.utm.mv

Why Are We Studying Logic?

Some of the reasons:

- Logic is the foundation for computer operation
- Logical conditions are common in programs:

Example:

Selection: if (score <= max) { ... }

Iteration: while (iimit && list[i]!=sentinel) ...

• All manner of structures in computing have properties that need to be proven (and proofs that need to be understood).

Examples: Trees, Graphs, Recursive Algorithms, . . .

- Programs can be proven correct.
- Computational linguistics must represent and reason about human language, and language represents thought (and thus also logic).

innovative • entrepreneurial • global

PROPOSITION

A **statement** or a **proposition**, is a declarative sentence that is **either TRUE or FALSE**, **but not both**.

Example:

- 4 is less than 3.
- 7 is an even integer.
- Washington, DC, is the capital of United State.

innovative • entrepreneurial • globa

WWW.Litm.mv

Example

- i) Why do we study mathematics?
- ii) Study logic.
- iii) What is your name?
- iv) Quiet, please.

The above sentences are not propositions. Why?

(i) & (iii): is question, not a statement.

(ii) & (iv): is a command.

nnovative • entrepreneurial • global

- i) The temperature on the surface of the planet Venus is 800 F.
- ii) The sun will come out tomorrow.

Propositions? Why?

- Is a statement since it is either true or false, but not both.
- However, we do not know at this time to determine whether it is true or false.

innovative • entrepreneurial • global

ywyw utm my

CONJUNCTIONS

Conjunctions are:

- Compound propositions formed in English with the word "and",
- Formed in logic with the caret symbol (" ∧ "), and
- True only when both participating propositions are true.

innovative • entrepreneurial • global

p: today is Monday

q: it is hot

 $p \wedge q$: today is Monday and it is hot

innovative • entrepreneurial • glob

MANAGA LIETO POS

Example

Proposition

p: 2 divides 4

q: 2 divides 6

Symbol: Statement

 $p \wedge q$: 2 divides 4 and 2 divides 6.

or

 $p \wedge q$: 2 divides both 4 and 6.

nnovative • entrepreneurial • global

Proposition

p: 5 is an integer

q: 5 is not an odd integer

Symbol: Statement

 $p \wedge q$: 5 is an integer and 5 is not an odd integer. **or**,

 $p \wedge q$: 5 is an integer but 5 is not an odd integer.

innovative • entrepreneurial • globa

76 VWW LIED DV

DISJUNCTION

- Compound propositions formed in English with the word "or",
- Formed in logic with the caret symbol (" V "), and,
- True when one or both participating propositions are true.

innovative • entrepreneurial • global

DISJUNCTION (cont.)

- Let **p** and **q** be propositions.
- The disjunction of p and q, written p v q is
 the statement formed by putting statements
 p and q together using the word "or".
- The symbol **v** is called "or"

innovative • entrepreneurial • globa

ww.utm.m

DISJUNCTION (cont.)

The truth table for $p \lor q$:

p	q	pvq
Т	T	T
Т	F	T
F	Т	Т
F	F	F

innovative • entrepreneurial • global

UTMUNHERSTI TEMOLOGI MALAYSA

Example

- i) **p**: 2 is an integer ; **q**: 3 is greater than 5
 - **p** V **q** 2 is an integer or 3 is greater than 5
- ii) **p**: 1+1=3; **q**: A decade is 10 years
 - $p \lor q$ 1+1=3 or a decade is 10 years

innovative • entrepreneurial • globa

WWW.Litm.mv

Example

- iii) **p**: 3 is an even integer; **q**: 3 is an odd integer
 - **p** V **q** 3 is an even integer or 3 is an odd integer

or

3 is an even integer or an odd integer

101

innovative • entrepreneurial • global

p: It will rain tomorrow; **q**: it will snow tomorrow

Give the negation of the following statement and write the symbol.

"It will rain tomorrow or it will snow tomorrow".

e • entrepreneurial • global

vww.utm.my

In each of the following, form the conjunction and the disjunction of \boldsymbol{p} and \boldsymbol{q} by writing the symbol and the statements.

- i) p: I will drive my carq: I will be late
- ii) p : NUM > 10 $q : NUM \le 15$

innovative • entrepreneurial • global

706

Exercise

Suppose x is a particular real number. Let p, q and r symbolize "0 < x", "x < 3" and "x = 3", respectively. Write the following inequalities symbolically:

- a) $x \le 3$
- b) 0 < x < 3
- c) $0 < x \le 3$

innovative • entrepreneurial • global

State either TRUE or FALSE if \boldsymbol{p} and \boldsymbol{r} are TRUE and \boldsymbol{q} is FALSE.

- a) ~ $p \wedge (q \vee r)$
- b) $(r \land \neg q) \lor (p \lor r)$

innovative • entrepreneurial • globa

109

CONDITIONAL PROPOSITIONS

Let **p** and **q** be propositions.

"if p, then q"

is a statement called a **conditional proposition**, written as

 $p \rightarrow q$

nnovative • entrepreneurial • global

p: x/2 is an integer.

q: x is an even integer.

 $\mathbf{p} \rightarrow \mathbf{q}$: if x/2 is an integer, then x is an even integer.

innovative • entrepreneurial • global

113

BICONDITIONAL

Let **p** and **q** be propositions.

"p if and only if q"

is a statement called a **biconditional proposition**, written as

nnovative • entrepreneurial • global

BICONDITIONAL (cont.)

The **truth table** of $p \leftrightarrow q$:

p	q	<i>p</i> ↔ <i>q</i>
Т	Т	T
Т	F	F
F	Т	F
F	F	Т

Example

p: my program will compile

q: it has no syntax error.

 $p \leftrightarrow q$: My program will compile if and only if it

has no syntax error.

p: x is divisible by 3q: x is divisible by 9

 $p \leftrightarrow q$: x is divisible by 3 if and only if x is divisible by 9.

innovative • entrepreneurial • globa

www.utm.m

www.utm.n

Neither ..nor..

Neither p **nor** q [$\sim p$ and $\sim q$] is a TRUE statement if neither p nor q is true.

р	q	~p∧ ~q
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

innovative • entrepreneurial • global

p: It is hot.*q*: It is sunny.

 $\sim p \land \sim q$: It is neither hot nor sunny, or It is not hot and it is not sunny.

innovative • entrepreneurial • globa

MANAGE LITTER OF

Exercise

Represent the given statement symbolically by letting p: 4<2, q: 7<10, r: 6<6.

- a) If (4<2 and 6<6), then 7<10
- b) 7<10 if and only if (4<2 and 6 is not less than6)
- c) If it is not the case that (6<6 and 7 is not less than 10), then 6<6

innovative • entrepreneurial • global

LOGICAL EQUIVALENCE

- The compound propositions Q and R are made up of the propositions $p_1, ..., p_n$.
- Q and R are logically equivalent and write,
 Q ≡ R

provided that given any truth values of $p_1, ..., p_n$, either Q and R are both true or Q and R are both false.

innovative • entrepreneurial • globa

www.utm.mv

Example

$$Q = p \rightarrow q$$
 $R = \neg q \rightarrow \neg p$
Show that, $Q \equiv R$

The truth table shows that, $Q \equiv R$

p	q	<i>p</i> → <i>q</i>	$\neg q \rightarrow \neg p$
Т	T	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

innovative • entrepreneurial • global

Show that, $\neg (p \rightarrow q) \equiv p \land \neg q$

The truth table shows that, $\neg (p \rightarrow q) \equiv p \land \neg q$

р	q	¬(p → q)	<i>p</i> ∧ ¬ <i>q</i>
Т	Т	F	F
Т	F	Т	Т
F	Т	F	F
F	F	F	F

innovative • entrepreneurial • globa

vava utm m

19

Construct the truth table for,

$$\mathbf{A}=\neg(p\vee q)\rightarrow(q\wedge p)$$

Solution:

p	q	(p∨q)	¬(p∨q)	(q∧p)	A
T	T	T	F	T	T
Т	F	T	F	F	T
F	Т	T	F	F	T
F	F	F	T	F	F

innovative • entrepreneurial • global

///// utm m

Exercise

Construct the truth table for each of the following statements:

i)
$$\neg p \land q$$

ii)
$$\neg(p \lor q) \rightarrow q$$

iii)
$$\neg(\neg p \land q) \lor q$$

$$iv)(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

nnovative • entrepreneurial • global

LOGIC & SET THEORY

Logic and set theory go very well togather. The previous definitions can be made very succinct:

 $x \notin A$ if and only if $\neg(x \in A)$

 $A \subseteq B$ if and only if $(x \in A \rightarrow x \in B)$ is True

 $x \in (A \cap B)$ if and only if $(x \in A \land x \in B)$

 $x \in (A \cup B)$ if and only if $(x \in A \lor x \in B)$

 $x \in A-B$ if and only if $(x \in A \land x \notin B)$

 $x \in A \triangle B$ if and only if $(x \in A \land x \notin B) \lor (x \in B \land x \notin A)$

 $x \in A'$ if and only if $\neg(x \in A)$

 $X \in P(A)$ if and only if $X \subseteq A$

innovative • entrepreneurial • global

www.utm.m

Venn Diagrams

Venn Diagrams are used to depict the various unions, subsets, complements, intersections etc. of sets.

nnovative • entrepreneurial • global

Theorem for Logic

Let \boldsymbol{p} , \boldsymbol{q} and \boldsymbol{r} be propositions.

Idempotent laws:

$$p \land p \equiv p$$

 $p \lor p \equiv p$

Truth table:

р	<i>p</i> ∧ <i>p</i>	p∨p
Т	T	T
F	F	F

innovative • entrepreneurial • global

WW LITTER TO

Theorem for Logic (cont.)

Double negation law:

$$\neg \neg p \equiv p$$

Commutative laws:

$$p \land q \equiv q \land p$$

 $p \lor q \equiv q \lor p$

nnovative • entrepreneurial • global

vww.utm.my

Theorem for Logic (cont.)

De Morgan's laws:

$$\neg(p \land q) \equiv (\neg p) \lor (\neg q)$$

$$\neg(p \lor q) \equiv (\neg p) \land (\neg q)$$

The truth table for $\neg(p \lor q) \equiv (\neg p) \land (\neg q)$

р	q	¬(p v q)	¬p^¬q
T	T	F	F
T	F	F	F
F	T	F	F
F	F	T	T

innovative • entrepreneurial • globa

MANAGE TEMPON

Exercise

Given,

$$\mathbf{R} = p \wedge (\neg q \vee r)$$

$$Q = p \lor (q \land \neg r)$$

State whether or not $R \equiv Q$.

138

www.utm.my

nnovative • entrepreneurial • global

Propositional functions p, q and r are defined as follows:

p is "n = 7"

q is "a > 5"

r is "x = 0"

Write the following expressions in terms of p, q and r, and show that each pair of expressions is **logically equivalent**. State carefully which of the above laws are used at each stage.

(a) ((n = 7) or (a > 5)) and (x = 0)

((n = 7) and (x = 0)) or ((a > 5) and (x = 0))

(b) $\neg((n = 7) \text{ and } (a \le 5))$

 $(n \neq 7)$ or (a > 5)

(c) (n = 7) or $(\neg((a \le 5) \text{ and } (x = 0)))$

 $((n = 7) \text{ or } (a > 5)) \text{ or } (x \neq 0)$

nnovative • entrepreneurial • globa

WWW LITTER IN

Exercise

Propositions **p**, **q**, **r** and **s** are defined as follows:

p is "I shall finish my Coursework Assignment"

q is "I shall work for forty hours this week"

r is "I shall pass Maths"

s is "I like Maths"

Write each sentence in symbols:

- (a) I shall not finish my Coursework Assignment.
- (b) I don't like Maths, but I shall finish my Coursework Assignment.
- (c) If I finish my Coursework Assignment, I shall pass Maths.
- (d) I shall pass Maths only if I work for forty hours this week and finish my Coursework Assignment.

Write each expression as a sensible (if untrue!) English sentence:

(e) q v p

(f) $\neg p \rightarrow \neg r$

nnovative • entrepreneurial • global

1/13

For each pair of expressions, construct truth tables to see if the two compound propositions are logically equivalent:

(a)
$$p \lor (q \land \neg p)$$

 $p \lor q$

(b)
$$(\neg p \land q) \lor (p \land \neg q)$$

 $(\neg p \land \neg q) \lor (p \land q)$

innovative • entrepreneurial • globa

145