## © UTM

## CHAPTER 1

## Part 3:

Fundamental and Elements of Logic

## UTM <br> Why Are We Studying Logic?

Some of the reasons:

- Logic is the foundation for computer operation
- Logical conditions are common in programs:

Example:
Selection: if (score <=max) \{... \}
Iteration: while (iবimit \& \& list[i]!=sentinel) ...

- All manner of structures in computing have properties that need to be proven (and proofs that need to be understood).
Examples: Trees, Graphs, Recursive Algorithms, . . .
- Programs can be proven correct.
- Computational linguistics must represent and reason about human language, and language represents thought (and thus also logic).


## (0) UTM

## PROPOSITION

A statement or a proposition, is a declarative sentence that is either TRUE or FALSE, but not both.

## Example:

- 4 is less than 3.
- 7 is an even integer.
- Washington, DC, is the capital of United State.


## Example

i) Why do we study mathematics?
ii) Study logic.
iii) What is your name?
iv) Quiet, please.

The above sentences are not propositions. Why ?
(i) \& (iii) : is question, not a statement.
(ii) \& (iv) : is a command.

## (0) UTM

## Example

i) The temperature on the surface of the planet Venus is 800 F .
ii) The sun will come out tomorrow.

## Propositions? Why?

- Is a statement since it is either true or false, but not both.
- However, we do not know at this time to determine whether it is true or false.


## CONJUNCTIONS

Conjunctions are:

- Compound propositions formed in English with the word "and",
- Formed in logic with the caret symbol
(" $\wedge$ "), and
- True only when both participating propositions are true.



## (0) UTM

## CONJUNCTIONS <br> (cont.)

TRUTH TABLE: This tables aid in the evaluation of compound propositions.

|  |  |  |
| :---: | :---: | :---: |
| $p$ | $q$ | $p \wedge q$ |
| T | T | T |
|  |  |  |
| T | F | F |
| F | T | F |
| F | F | F |

## Example

$p: 2$ is an even integer
$\mathrm{q}: 3$ is an odd number
UTM
$p \wedge q\}$ symbols
2 is an even integer and 3 is an odd number statements

## (0) UTM

## Example

$p$ : today is Monday
$q$ : it is hot
$p \wedge q$ : today is Monday and it is hot

## Example

Proposition
$p: 2$ divides 4
q: 2 divides 6
Symbol: Statement
$p \wedge q: 2$ divides 4 and 2 divides 6 .
or,
$p \wedge q: 2$ divides both 4 and 6 .

## (0) UTM

## Example

## Proposition

$p: 5$ is an integer
$\mathrm{q}: 5$ is not an odd integer

## Symbol: Statement

$\mathrm{p} \wedge \mathrm{q}: 5$ is an integer and 5 is not an odd integer. or,
$p \wedge q: 5$ is an integer but 5 is not an odd integer.

## DISJUNCTION

- Compound propositions formed in English with the word "or",
- Formed in logic with the caret symbol (" v "), and,
- True when one or both participating propositions are true.



## © 0

## DISJUNCTION

- Let $\mathbf{p}$ and $\mathbf{q}$ be propositions.
- The disjunction of $\mathbf{p}$ and $\mathbf{q}$, written $\mathbf{p} \vee \mathbf{q}$ is the statement formed by putting statements pand q together using the word "or".
- The symbol v is called "or"


## UTM

## DISJUNCTION

The truth table for $\mathbf{p} \vee \mathbf{q}$ :

| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | $F$ | $T$ |
| F | $T$ | $T$ |
| $F$ | $F$ | $F$ |

## (3) UTM

## Example

i) $\mathbf{p}$ : 2 is an integer ; $\mathbf{q}: 3$ is greater than 5
$\mathbf{p} \vee \mathbf{q} \quad 2$ is an integer or 3 is greater than 5
ii) $\mathbf{p}: 1+1=3 ; \mathbf{q}: A$ decade is 10 years
$\mathbf{p} \vee \mathbf{q} \quad 1+1=3$ or a decade is 10 years

## Example

iii) $\mathbf{p}$ : 3 is an even integer; $\mathbf{q}: 3$ is an odd integer
$\mathbf{p} \vee \mathbf{q} 3$ is an even integer or 3 is an odd integer
or
3 is an even integer or an odd integer

## © 0 <br> NEGATION

Negating a proposition simply flips its value. Symbols representing negation include: $\neg x, \bar{x}, \sim x, x^{\prime}$ (NOT)

Let p be a proposition. The negation of $p$, written $\neg p$ is the statement obtained by negating statement p .


## © UTM

## Example

$\mathbf{p}: 2$ is positive $\neg \mathbf{p}$

2 is not positive

## Exercise

p: It will rain tomorrow; $\mathbf{q}$ : it will snow tomorrow
Give the negation of the following statement and write the symbol.
"It will rain tomorrow or it will snow tomorrow".

## © 3 UTM

## Exercise

In each of the following, form the conjunction and the disjunction of $\mathbf{p}$ and $\mathbf{q}$ by writing the symbol and the statements.
i) p : I will drive my car
q : I will be late
ii) $\mathrm{p}: \mathrm{NUM}>10$
$\mathrm{q}: \mathrm{NUM} \leq 15$

## UTM

## Exercise

Suppose $x$ is a particular real number. Let $\mathbf{p , q}$ and $\mathbf{r}$ symbolize " $0<x$ ", " $x<3$ " and " $x=3$ ", respectively. Write the following inequalities symbolically:
a) $x \leq 3$
b) $0<x<3$
c) $0<x \leq 3$

## © 0

## Exercise

State either TRUE or FALSE if $\mathbf{p}$ and $\mathbf{r}$ are TRUE and $\mathbf{q}$ is FALSE.
a) $\sim p \wedge(q \vee r)$
b) $(r \wedge \sim q) \vee(p \vee r)$

## UTM

## CONDITIONAL PROPOSITIONS

Let $\mathbf{p}$ and $\mathbf{q}$ be propositions.

```
"if p, then q"
```

is a statement called a conditional proposition, written as

$$
p \rightarrow q
$$



## UTM

## Example

$\mathbf{p}$ : today is Sunday ; q : I will go for a walk
$\mathbf{p} \rightarrow \mathbf{q}:$ If today is Sunday, then I will go for a walk.
$\mathbf{p}$ : I get a bonus; $\mathbf{q}$ : I will buy a new car
$\mathbf{p} \rightarrow \mathbf{q}:$ If I get a bonus, then I will buy a new car

## (0) UTM

## Example

p:x/2 is an integer.
$\mathbf{q}: x$ is an even integer.
$\mathbf{p} \rightarrow \mathbf{q}:$ if $\mathrm{x} / 2$ is an integer, then x is an even integer.

## BICONDITIONAL

Let $\mathbf{p}$ and $\mathbf{q}$ be propositions.

## " $\mathbf{p}$ if and only if q"

is a statement called a biconditional proposition, written as

$$
p \leftrightarrow q
$$

## © 3 UTM

## BICONDITIONAL

The truth table of $p \leftrightarrow q$ :

| p | $\mathbf{q}$ | $\mathbf{p} \leftrightarrow \boldsymbol{q}$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |

## Example

p: my program will compile
$\mathbf{q}$ : it has no syntax error.
$\mathbf{p} \leftrightarrow \mathbf{q}$ : M y program will compile if and only if it has no syntax error.

## © 0

## Example

p: x is divisible by 3
$\mathbf{q}: x$ is divisible by 9
$\mathbf{p} \leftrightarrow \mathbf{q}:$
$x$ is divisible by 3 if and only if $x$ is divisible by 9 .

## Neither ..nor..

Neither $\boldsymbol{p}$ nor $\boldsymbol{q}[\sim p$ and $\sim q]$ is a
TRUE statement if neither $p$ nor $q$ is true.

| p | $\mathbf{q}$ | $\sim \mathbf{p} \wedge \sim \mathbf{q}$ |
| :---: | :---: | :---: |
| T | T | F |
| T | F | F |
| F | T | F |
| F | F | T |

## © 0

## Example

p: It is hot.
$\mathbf{q}$ : It is sunny.
$\sim \mathbf{p} \wedge \sim \mathbf{q}:$ It is neither hot nor sunny, or It is not hot and it is not sunny.

## (0) UTM

## Exercise

Represent the given statement symbolically by letting $p: 4<2, q: 7<10, r: 6<6$.
a) If ( $4<2$ and $6<6$ ), then $7<10$
b) $7<10$ if and only if ( $4<2$ and 6 is not less than 6)
c) If it is not the case that ( $6<6$ and 7 is not less than 10), then $6<6$

## © 0

## LOGICALEQUIVALENCE

- The compound propositions Q and R are made up of the propositions $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$.
- $\mathbf{Q}$ and $\mathbf{R}$ are logically equivalent and write, Q $\equiv \mathbf{R}$
provided that given any truth values of $p_{1}, \ldots, p_{n}$ either $\mathbf{Q}$ and $\mathbf{R}$ are both true or $\mathbf{Q}$ and $\mathbf{R}$ are both false.


## Example

$\mathbf{Q}=p \rightarrow q \quad \mathbf{R}=\neg q \rightarrow \neg p$
Show that, $\mathbf{Q} \equiv \mathbf{R}$
The truth table shows that, $\mathbf{Q} \equiv \mathbf{R}$

| p | q | $p \rightarrow q$ | $\neg q \rightarrow \neg p$ |
| :---: | :---: | :---: | :---: |
| T | T | T | T |
| T | F | F | F |
| F | T | T | T |
| F | F | T | T |

## (0) UTM

## Example

Show that, $\quad \neg(p \rightarrow q) \equiv p \wedge \neg q$
The truth table shows that, $\neg(p \rightarrow q) \equiv p \wedge \neg q$

| p | $q$ | $\neg(p \rightarrow q)$ | $p \wedge \neg q$ |
| :---: | :---: | :---: | :---: |
| T | T | F | F |
| T | F | T | T |
| F | T | F | F |
| F | F | F | F |

## (0) UTM

## PRECEDENCE OF LOGICAL CONNECTIVES



## © 0

## Example

Construct the truth table for, $A=-(p \vee q) \rightarrow(q \wedge p)$
Solution:

| $p$ | $q$ | $(p \vee q)$ | $-(p \vee q)$ | $(q \wedge p)$ | $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | T | T |
| T | F | T | F | F | T |
| F | T | T | F | F | T |
| F | F | F | T | F | F |

## (3) UTM

## Exercise

Construct the truth table for each of the following statements:
i) $\neg p \wedge q$
ii) $-(p \vee q) \rightarrow q$
iii) $-(\neg p \wedge q) \vee q$
iv) $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$

## © 3 UTM

## LOGIC \& SET THEORY

Logic and set theory go very well togather. The previous definitions can be made very succinct:

$$
\begin{gathered}
x \notin A \text { if and only if } \neg(x \in A) \\
A \subseteq B \text { if and only if }(x \in A \rightarrow x \in B) \text { is True } \\
x \in(A \cap B) \text { if and only if }(x \in A \wedge x \in B) \\
x \in(A \cup B) \text { if and only if }(x \in A \vee x \in B) \\
x \in A-B \text { if and only if }(x \in A \wedge x \notin B) \\
x \in A \Delta B \text { if and only if }(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A) \\
x \in A^{\prime} \text { if and only if } \neg(x \in A) \\
x \in P(A) \text { if and only if } x \subseteq A
\end{gathered}
$$

## Venn Diagrams

Venn Diagrams are used to depict the various unions, subsets, complements, intersections etc. of sets.


## © CTM



## Logic and Sets are closely related

| Tautology | Set Operation Identity |
| :--- | :--- |
| $p \vee q \leftrightarrow q \vee p$ | $A \cup B=B \cup A$ |
| $p \wedge q \leftrightarrow q \wedge p$ | $A \cap B=B \cap A$ |
| $p \vee(q \vee r) \leftrightarrow(p \vee q) \vee r$ | $A \cup(B \cup C)=(A \cup B) \cup C$ |
| $p \wedge(q \wedge r) \leftrightarrow(p \wedge q) \wedge r$ | $A \cap(B \cap C)=(A \cap B) \cap C$ |
| $p \vee(q \wedge r) \leftrightarrow(p \vee q) \wedge(p \vee r)$ | $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ |
| $p \wedge(q \vee r) \leftrightarrow(p \wedge q) \vee(p \wedge r)$ | $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ |
| $p \wedge \neg q \leftrightarrow p \wedge \neg(p \wedge q)$ | $A-B=A-(A \cap B)$ |
| $p \wedge \neg(q \vee r) \leftrightarrow(p \wedge \neg q) \wedge(p \wedge \neg r)$ | $A-(B \cap C)=(A-B) \cup(A-C)$ |
| $p \wedge \neg(q \wedge r) \leftrightarrow(p \wedge \neg q) \vee(p \wedge \neg r)$ | $A-(B \cup C)=(A-B) \cap(A-C)$ |
| $p \wedge(q \wedge \neg r) \leftrightarrow(p \wedge q) \wedge \neg(p \wedge \neg r)$ | $A \cap(B-C)=(A \cap B)-(A \cap C)$ |
| $p \vee(q \wedge \neg r) \leftrightarrow(p \vee q) \wedge \neg(r \wedge \neg p)$ | $A \cup(B-C)=(A \cup B)-(C-A)$ |
| $p \wedge \neg \vee(q \wedge \neg r) \leftrightarrow(p \wedge \neg q) \vee(p \wedge r)$ | $A-(B-C)=(A-B) \cup(A \cap C)$ |

The above identities serve as the basis for an "algebra of sets".


## © 0

## Theorem for Logic

Let $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$ be propositions.

Idempotent laws:

$$
\begin{aligned}
& p \wedge p \equiv p \\
& p \vee p \equiv p
\end{aligned}
$$

Truth table:

| $p$ | $p \wedge p$ | $p \vee p$ |
| :---: | :---: | :---: |
| $T$ | $T$ | $T$ |
| $F$ | $F$ | $F$ |

Double negation law:

$$
\neg \neg p \equiv p
$$

Commutative laws:

$$
\begin{aligned}
& p \wedge q \equiv q \wedge p \\
& p \vee q \equiv q \vee p
\end{aligned}
$$

## (3) UTM

## Theorem for Logic (cont.)

Associative laws:

$$
\begin{aligned}
& (p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \\
& (p \vee q) \vee r \equiv p \vee(q \vee r)
\end{aligned}
$$

Distributive laws:

$$
\begin{aligned}
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

## UTM

## Prove: Distributive Laws

| $p$ | $q$ | $r$ | $p \vee(q \wedge r)$ | $(p \vee q) \wedge(p \vee r)$ |
| :---: | :--- | :--- | :--- | :---: |
| $T$ | $T$ | $T$ | $T$ | $T$ |
| $T$ | $T$ | $F$ | $T$ | $T$ |
| $T$ | $F$ | $T$ | $T$ | $T$ |
| $T$ | $F$ | $F$ | $T$ | $T$ |
| $F$ | $T$ | $T$ | $T$ | $T$ |
| $F$ | $T$ | $F$ | $F$ | $F$ |
| $F$ | $F$ | $T$ | $F$ | $F$ |
| $F$ | $F$ | $F$ | $F$ | $F$ |

## © 0 <br> Theorem for Logic (cont.)

Absorption laws:

$$
\begin{align*}
& p \wedge(p \vee q) \equiv p \\
& p \vee(p \wedge q) \equiv p \tag{0}
\end{align*}
$$

## PROVE

## (0) UTM

## Theorem for Logic (cont.)

De M organ's laws:

$$
-(p \wedge q) \equiv(\neg p) \vee(\neg q)
$$

$$
\neg(p \vee q) \equiv(\neg p) \wedge(\neg q)
$$

The truth table for $-(p \vee q) \equiv(\neg p) \wedge(\neg q)$

| $p$ | $q$ | $\neg(p \vee q)$ | $\neg p \wedge \neg q$ |
| :---: | :---: | :---: | :---: |
| $T$ | $T$ | $F$ | $F$ |
| $T$ | $F$ | $F$ | $F$ |
| $F$ | $T$ | $F$ | $F$ |
| $F$ | $F$ | $T$ | $T$ |

## Exercise

Given,

$$
\begin{aligned}
& \mathbf{R}=p \wedge(\neg q \vee r) \\
& \mathbf{Q}=p \vee(q \wedge \neg r)
\end{aligned}
$$

State whether or not $\mathbf{R} \equiv \mathbf{Q}$.

## ( $)$ UTM

## Exercise

Propositional functions $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$ are defined as follows:
$p$ is " $\mathrm{n}=7$ "
$q$ is " $a>5$ "
$r$ is " $x=0$ "
Write the following expressions in terms of $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$, and show that each pair of expressions is logically equivalent. State carefully which of the above laws are used at each stage.
(a) ( $n=7$ ) or $(a>5))$ and $(x=0)$
$((\mathrm{n}=7)$ and $(\mathrm{x}=0))$ or $((\mathrm{a}>5)$ and $(\mathrm{x}=0))$
(b) $-((n=7)$ and $(a \leq 5))$
$(n \neq 7)$ or $(a>5)$
(c) $(\mathrm{n}=7)$ or $(-((a \leq 5)$ and $(x=0)))$
$((n=7)$ or $(a>5))$ or $(x \neq 0)$

## Exercise

Propositions $\mathbf{p , q}, \mathbf{r}$ and $\mathbf{s}$ are defined as follows:
p is "I shall finish my Coursework Assignment"
q is "I shall work for forty hours this week"
$r$ is "I shall pass $M$ aths"
s is "I like M aths"
Write each sentence in symbols:
(a) I shall not finish my Coursework Assignment.
(b) I don't like M aths, but I shall finish my Coursework Assignment.
(c) If I finish my Coursework Assignment, I shall pass M aths.
(d) I shall pass M aths only if I work for forty hours this week and finish my Coursework Assignment.

Write each expression as a sensible (if untrue!) English sentence:
(e) $q v p$
(f) $\neg p \rightarrow \neg r$

## (0) UTM

## Exercise

For each pair of expressions, construct truth tables to see if the two compound propositions are logically equivalent:
(a) $p \vee(q \wedge-p)$ $p \vee q$
(b) $\quad(-p \wedge q) \vee(p \wedge-q)$ $(-p \wedge-q) \vee(p \wedge q)$

