

Union

- If A and B are finite sets, the cardinality of $A \cup B$,

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Example

$A=\{1,2,3,4,5,6,7,8\}$
$B=\{2,4,6,8\}$
$A-B=\{1,3,5,7\}$

Exercise

- Let,
$U=\{a, b, c, d, e, f, g, h, i, j, k, l, m\}$
$A=\{a, c, f, m\}$
$B=\{b, c, g, h, m\}$
- Find:
$A \cup B, A \cap B,|A \cup B|, A-B$ dan A^{\prime}.

(c) UTM | Set Identities |
| :---: |
| (or Properties of Set) |

- Commutative laws
$A \cap B=B \cap A$
$A \cup B=B \cup A$

(3)UTM

Set Identities (comed)

- Distributive laws

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

Set Identities ${ }_{(\text {contal })}$

- Absorption laws

$$
A \cup(A \cap B)=A
$$

$A \cap(A \cup B)=A$
Set Identities ${ }_{\text {(conta) }}$

- Idempotent laws
$A \cap A=A$
$A \cup A=A$

[^0]
Set Identities ${ }_{\text {(contal }}$

- De Morgan's laws

$$
(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

© 3 UTM

Set Identities (conte)

- Properties of universal set

$$
\begin{aligned}
& A \cup U=U \\
& A \cap U=A
\end{aligned}
$$

- Set difference laws:

$$
A-B=A \cap B^{\prime}
$$

Set Identities (comet)

- Identity laws:

$$
\begin{aligned}
& A \cup \varnothing=A \\
& A \cap U=A
\end{aligned}
$$

- Properties of empty set:
$A \cup \varnothing=A$
$A \cap \varnothing=\varnothing$

Example

By referring to the properties of set operations (Set Identities), show that:

$$
A-(A \cap B)=A-B
$$

(C) UTM

Cartesian Product

- Let A and B be sets.
- An ordered pair of elements $a \in A$ dan $b \in B$ written (a, b) is a listing of the elements a and b in a specific order.
- The ordered pair (a, b) specifies that a is the first element and b is the second element.

Cartesian Product

- An ordered pair (a, b) is considered distinct from ordered pair (b, a), unless $a=b$.
- Example $(1,2) \neq(2,1)$

(3) UTM

Cartesian Product

- The Cartesian product of two sets A and B, written $A \times B$ is the set,

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

- For any set A,

$$
A \times \varnothing=\varnothing \times A=\varnothing
$$

$\underbrace{}$

© UTM

Cartesian Product

- if $A \neq B$, then $A \times B \neq B \times A$.
- if $|A|=m$ and $|B|=n$, then $|A \times B|=m n$.

Example

- $A=\{1,3\}, B=\{2,4,6\}$.

$$
\begin{aligned}
& A \times B=\{(1,2),(1,4),(1,6),(3,2),(3,4),(3,6)\} \\
& B \times A=\{(2,1),(2,3),(4,1),(4,3),(6,1),(6,3)\} \\
& A \neq B, A \times B \neq B \times A \\
& |A|=2,|B|=3,|A \times B|=2.3=6 .
\end{aligned}
$$

(3) UTM

Cartesian Product

- The Cartesian product of sets $A_{1}, A_{2}, \ldots ., A_{n}$ is defined to be the set of all n-tuples ($\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{n}$) where $\mathrm{a}_{i} \in A_{i}$ for $i=1, \ldots, n$;
- It is denoted $A_{1} \times A_{2} \times \ldots . . \times A_{n}$

$$
\left|A_{1} \times A_{2} \times \ldots \times A_{n}\right|=\left|A_{1}\right| .\left|A_{2}\right| \ldots .\left|A_{n}\right|
$$

(C) UTM

- Let $A=\{w, x\}, B=\{1,2\}$ and $C=\{K B, S D, P S\}$.
- Find $|A \times B|,|B \times C|,|A \times C|,|A \times B \times C|,|B \times C \times A|$, $|A \times B \times A \times C|$
- Determine the following set,
a) $A \times B, B \times C, A \times C$
b) $A \times B \times C$
c) $B \times C \times A$
d) $A \times B \times A \times C$

Exercise

Exercise

- Let $X=\{1,2\}, Y=\{a\}$ and $Z=\{b, d\}$.
- List the elements of each set.
a) $X \times Y$
b) $Y \times X$
c) $X \times Y \times Z$
d) $X \times Y \times Y$
e) $X \times X \times X$
f) $Y \times X \times Y \times Z$

[^0]:

 ## Set Identities (conta)

 - Complement laws

 $$
 \begin{aligned}
 & A \cap A^{\prime}=\varnothing \\
 & A \cup A^{\prime}=U
 \end{aligned}
 $$

 - Double complement laws: $\left(A^{\prime}\right)^{\prime}=A$
 - Complement of U and \varnothing :

 $$
 \begin{aligned}
 & \varnothing^{\prime}=U \\
 & U^{\prime}=\varnothing
 \end{aligned}
 $$

