Exercise 4b.2: According the the example, draw the logic circuit for the original expression and the last expression simplified.

Original expression:

$$
\bar{A} B C+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C+A B C
$$

Simplified expression: $B C+A \bar{B}+\bar{B} \bar{C}$

Exercise 4b.3: Convert each of the following Boolean

 expressions to SOP form:(i) $A B+B(C D+E F)$
(ii) $(A+B)(B+C+D)$
(iii) $\overline{(\overline{A+B})+C}$
(i) $A B+B(C D+E F)=A B+B C D+B E F$
(ii) $(A+B)(B+C+D)$

$$
\begin{aligned}
& =(A+B) B+(A+B) C+(A+B) D \\
& =A B+B B+A C+B C+A D+B D
\end{aligned}
$$

(iii) $\overline{(\overline{A+B})+C}$

$$
\begin{array}{ll}
=(\overline{\overline{A+B}}) \bar{C} & \text { (DeMorgan's Theorem II) } \\
=(A+B) \bar{C} & \text { (Apply rule 9) } \\
=A \bar{C}+B \bar{C} &
\end{array}
$$

Exercise 4b.4: Define the variables of SOP expression $A \bar{C}+B \bar{C}$ and convert the expression to standard SOP form.

Solution 4b.4:

$$
\begin{aligned}
A \bar{C}+B \bar{C} & =A \bar{C}(B+\bar{B})+B \bar{C}(A+\bar{A}) \\
& =A B \bar{C}+A \bar{B} \bar{C}+A B \bar{C}+\bar{A} B \bar{C} \\
& =A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B \bar{C}
\end{aligned}
$$

Exercise 4b.5: Convert the following Boolean expressions to standard POS form: $(A+B)(\bar{B}+C)$

Rule 8: $(\mathrm{A} . \overline{\mathrm{A}})=0$
Rule 12: $(A+B C)=(A+B)(A+C)$

Solution 4b.5:

$$
\begin{aligned}
& (A+B)(\bar{B}+C) \\
& =(A+B+C \cdot \bar{C})(A \cdot \bar{A}+\bar{B}+C) \\
& =(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+\bar{B}+C)
\end{aligned}
$$

Exercise 4b.6: Represent the following Boolean expression:
(i) $A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B \bar{C}$ as a sigma notation
(ii) $(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+B+C)$ as a PI notation.

Solution 4b.6(i):
Expression: $\quad A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B \bar{C}$
Sigma notation: $\sum_{A B C}(6,4,2)$
Solution 4b.6(ii):
Expression:

$$
(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+B+C)
$$

000001010100
PI notation:
$\prod_{A B C}(0,1,2,4)$

Exercise 4b.7:
A Boolean expression is written in sigma notation as $X=\sum_{A B C}(7,4,3)$. Determine the logic level (binary value) for each product term and write whole expression.

Solution 4b.7:
$\sum_{A B C}(7,4,3)$
Logic level: $111 \quad 100 \quad 011$

Expression: $\quad A B C+A \bar{B} \bar{C}+\bar{A} B C$ (SOP)

Exercise 4b.8:
A Boolean expression is written in PI notation as
$X=\prod_{A B C}(7,4,3)$ Determine the logic level (binary value) for each sum term and write whole expression.

Solution 4b.8:
$\prod_{A B C}(7,4,3)$
Logic level
11100011

Expression: (POS)

Exercise 4b.9: Convert the following SOP expressions to an equivalent POS expression: $A \bar{C}+B \bar{C}$

Solution 4b.9:

- Step 1: Need to convert the expression into standard SOP (refer Exercise 4b.7)

$$
A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B \bar{C}
$$

- Step 2: Binary number for each SOP term.

Variables $=3(A, B, C) ; 2^{3}=8$ possible combinations.

$$
A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B \bar{C}
$$

$$
110 \quad 100 \quad 010 \quad \text { (} \leftarrow 3 \text { combinations })
$$

- Step 3: Equivalent sum term for each binary number.

Exercise 4b.11:

From the truth table, determine the:
(i) standard SOP expression; and
(ii) equivalent standard POS expression

INPUT			OUTPUT
A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Solution 4b.11(i):
Convert the binary values to product terms (SOP).

INPUT			OUTPUT	PRODUCTTERMS
A	B	C	X	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\rightarrow \bar{A} B C$
1	0	0	1	$\rightarrow A \bar{B} \bar{C}$
1	0	1	0	
1	1	0	1	$\rightarrow A B \bar{C}$
1	1	1	1	$\cdots \quad A B C$

Standard SOP expression: $\bar{A} B C+A \bar{B} \bar{C}+A B \bar{C}+A B C$

Solution 4b.11(ii):
Convert the binary values to sum terms (POS).

INPUT			OUTPUT	SUM TERMS
A	B	C	X	
0	0	0	0	$\rightarrow(A+B+C)$
0	0	1	0	$\rightarrow(A+B+\bar{C})$
0	1	0	0	$\rightarrow(A+\bar{B}+C)$
0	1	1	1	
1	0	0	1	
1	0	1	0	$\cdots(\bar{A}+B+\bar{C})$
1	1	0	1	
1	1	1	1	

Standard POS expression:

$$
(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+B+\bar{C})
$$

- In a K-map with 4 -variable or more, the top-most \& bottom-most cells of a column (and row) are adjacent.

8 cells

Example: 3 variables

POS

$$
\begin{aligned}
& (A+B+C)(A+\bar{B}+\bar{C})(A+B+\bar{C})(\bar{A}+\bar{B}+\bar{C}) \\
& \begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Exercise 4b.12: Map the following expression on a K-map.

$$
(A+B+C+D)(A+\bar{B}+\bar{C}+D)(\bar{A}+B+\bar{C}+D)
$$

Exercise 4b.12: Map the following SOP expression on a K-Map:
$\bar{B} \bar{C}+A \bar{B}+A B \bar{C}+A \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+A \bar{B} C D$

Solution 4b.12: Expand the terms by including all combinations of the missing variables numerically as follow:

$\bar{B} \bar{C}+A \bar{B}+A B \bar{C}+A \overline{B C D}+\bar{A} \bar{B} \overline{C D}+A \overline{B C D}$				
0000	1000	1100	1010	0001
0001	1001	1101		

Map each binary values by placing 1 in the right cell of the 4 -variables K-map

\[

\]

Exercise 4b.13: Use a Karnaugh map to minimize the following standard SOP.
$A \bar{B} C+\bar{A} B C+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}$
Solution 4b.13:
The binary values of the expression. 101011001000100

Map the expression and group the cells.

The resulting minimum SOP
Expression is $=\bar{B}+\bar{A} C$

Exercise 4b.13b: Transform the expression $\bar{B}+\bar{A} C$ into the K -Map by expanding numerically to standard form. Then, generate the simplified expression from the K-Map.

Exercise 4b.14: Use a Karnaugh map to minimize the following expression by expanding numerically to standard form. Then, generate the simplified expression.

$$
(A+B+D)(\bar{A}+\bar{B})(\bar{A}+C+\bar{D})
$$

Exercise 4b.14: Use a Karnaugh map to minimize a standard SOP expression $A \bar{B} C+\bar{A} B C+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}$ (Use "don't care" terms, $d(6,7)$ into the K-maps to produce better results)

Solution 4b.14:

The binary values of the expression. 101011001000100

The binary value of "don't care" notation. 110111

Map the expression and group the cells.

Expression: $\bar{B}+C$

Exercise 4b.15: Use a Karnaugh map to minimize an express, ın

$$
\sum_{A B C D}(0,5,8,9,11)
$$

(Use "don't care" terms, $d(1,2,10)$ into the K-maps to produce better results)

Exercise 4b.16: Transform the following expression into the K-Map. Then, generate the simplified expression from the K-Map.

$$
\overline{A B+A C}+\bar{A} \bar{B} C
$$

Solution 4b.16: Expand the expression to SOP form.

$$
\begin{aligned}
& =(\overline{A B})(\overline{A C})+\bar{A} \bar{B} C \\
& =(\bar{A}+\bar{B})(\bar{A}+\bar{C})+\bar{A} \bar{B} C \\
& =\bar{A} \bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C \\
& =\bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C
\end{aligned}
$$

Make the standard form expression.

$$
\begin{aligned}
& \bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C \\
& =\bar{A}(B+\bar{B})+\bar{A} \bar{C}(B+\bar{B})+\bar{A} \bar{B}(C+\bar{C})+\bar{B} \bar{C}(A+\bar{A})+\bar{A} \bar{B} C \\
& =\bar{A} B+\bar{A} \bar{B}+\bar{A} B \bar{C}+\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C \\
& =\bar{A} B(C+\bar{C})+\bar{A} \bar{B}(C+\bar{C})+\bar{A} B \bar{C}+\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+A \bar{B} \bar{C} \\
& =\bar{A} B C+\bar{A} B \bar{C}+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+A \bar{B} \bar{C} \\
& = \\
& =\bar{A} B C+\bar{A} B \bar{C}+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}
\end{aligned}
$$

Get the binary value for each term.

$$
\begin{array}{lllll}
\bar{A} B C+\bar{A} B \bar{C}+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C} \\
011 & 010 & 001 & 000 & 100
\end{array}
$$

Fill in the K-Map and grouping cells.

Exercise 4b.17: Using the same expression in exercise $4 b .16$, simplify the expression using the Boolean algebra and laws.

$$
\overline{A B+A C}+\bar{A} \bar{B} C
$$

Solution 4b.17: Expand the expression to SOP form.

$$
\begin{aligned}
& =(\overline{A B})(\overline{A C})+\bar{A} \bar{B} C \\
& =(\bar{A}+\bar{B})(\bar{A}+\bar{C})+\bar{A} \bar{B} C \\
& =\bar{A} \bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C \\
& =\bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C
\end{aligned}
$$

Simplify the expression.

$$
\begin{aligned}
& \bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C \\
= & (\bar{A}+\bar{A} \bar{C})+(\bar{A} \bar{B}+\bar{A} \bar{B} C)+\bar{B} \bar{C} \\
= & \bar{A}+\bar{A} \bar{B}+\bar{B} \bar{C} \\
= & (\bar{A}+\bar{A} \bar{B})+\bar{B} \bar{C} \\
= & \bar{A}+\bar{B} \bar{C}
\end{aligned}
$$

Compare your answer with Exercise 4b. 16

