IUIUW.utm.my
Exercise 4a.1:
Prove the Associate Law for $A(B C)=(A B) C$ using truth table.

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A B}$	$\mathbf{B C}$	$\mathbf{A}(\mathrm{BC})$	$\mathbf{(A B) C}$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Prove that $\overline{A B}$ is equal or not equal with $\bar{A} \bar{B}$ by using the truth table.

Solution:

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\mathbf{A B}$	$\overline{\mathbf{A}} \overline{\mathbf{B}}$	$\overline{\mathbf{A B}}$
0	0	1	1	0	1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	0	0	1	0	0

Exercise 4a.2:
Apply DeMorgan's theorems to each of the following expressions:
(a) $\overline{(A+B+C) D}$
(b) $\overline{A B C+D E F}$
(c) $A \bar{B}+\bar{C} D+E F$

Exercise 4a.3:

Draw the logic circuit represented by each expression:
(i) $A \bar{B}+\bar{A} B$
(ii) $A B+A B+A B C$
(iii) $\bar{A} B(C+\bar{D})$

UJUIU.utm.my

Exercise 4a.4:

Determine which of the logic circuits are equivalent.

