

www.utm.my

Exercise 4a.1:

Prove the Associate Law for A(BC) = (AB)C using truth table.

Α	В	С	AB	BC	A(BC)	(AB)C
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Solution:

Α	В	A	В	AB	AB	AB
0	0	1	1	0	1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	0	0	1	0	0
					AB	$\neq \overline{AB}$

Exercise 4a.2:

Apply DeMorgan's theorems to each of the following expressions:

- (a) $\overline{(A + B + C)D}$
- (b) $\overline{ABC + DEF}$
- (c) $A\overline{B} + \overline{C}D + EF$

Etx.

Exercise 4a.3:

Draw the logic circuit represented by each expression:

(i) $A\overline{B} + \overline{AB}$ (ii) $AB + \overline{AB} + \overline{ABC}$ (iii) $\overline{AB}(C + \overline{D})$

www.utm.my

Exercise 4a.4:

Determine which of the logic circuits are equivalent.

