
08: STRUCTURED DATA

Programming Technique I

(SCSJ1013)

Abstract Data Types

 A data type that specifies:
 values that can be stored

 operations that can be done on the values

 User of an abstract data type does not need to know the
implementation of the data type, e.g., how the data is stored

Abstract Data Types

 ADTs are created by programmers

 Abstraction: a definition that captures general
characteristics without details.
 Ex: An abstract triangle is a 3-sided polygon. A specific triangle may

be scalene, isosceles, or equilateral

 Data Type: defines the values that can be stored in a variable
and the operations that can be performed on it

Abstraction and Data Types

Combining Data into Structures

 Structure: C++ construct that allows multiple variables to be
grouped together.

 General format:

struct <structName>

{

type1 field1;

type2 field2;

. . .

};

Introduction to Structures

Example: struct Declaration

struct Student

{

int studentID;

string name;

short yearInSchool;

double gpa;

};

Structure tag

Structure
members

struct Declaration Notes

Must have ; after closing }.

 struct names commonly begin with uppercase letter.

Multiple fields of same type can be in comma-separated list:

string name, address;

 struct declaration does not allocate memory or create
variables.

 To define variables, use structure tag as type name:

Student bill;

Defining Variables

 struct declaration does not allocate memory or create
variables

 To define variables, use structure tag as type name:

Student bill;

studentID

name

yearInSchool

gpa

bill

Accessing Structure Members

Accessing Structure Members

 Use the dot (.) operator to refer to members of struct
variables:

cin >> stu1.studentID;

getline(cin, stu1.name);

stu1.gpa = 3.75;

 General Format: Member variables can be used in any
manner appropriate for their data type

Accessing Structure Members -
example

Program 11-1 (Continued)

Program 11-1 (Continued)

Displaying a struct Variable

 To display the contents of a struct variable, must display
each field separately, using the dot operator:

cout << bill; // won’t work

cout << bill.studentID << endl;

cout << bill.name << endl;

cout << bill.yearInSchool;

cout << " " << bill.gpa;

Comparing struct Variables

 Cannot compare struct variables directly:

if (bill == william)

// won’t work

 Instead, must compare on a field basis:

if (bill.studentID ==

william.studentID) ...

Exercise 1

 Refer to Exercise 1 No. 2 pg. 185 Lab 10.

 Solve the problem.

Initializing a Structure

Initializing a Structure

 struct variable can be initialized when

defined:

Student s = {11465, "Joan", 2, 3.75};

 Can also be initialized member-by-member

after definition:

s.name = "Joan";

s.gpa = 3.75;

More on Initializing a Structure

May initialize only some members:

Student bill = {14579};

 Cannot skip over members:

Student s = {1234, "John", ,

2.83}; // illegal

 Cannot initialize in the structure declaration, since this does
not allocate memory

Excerpts From Program 11-4

Exercise 2

 Refer to Program 10.1 pg. 185 Lab 10

 Write a complete program to:

– Initialize structure variables radius and
rumbia to the value listed in Table 10.1.

– Display all the values in both variables to
screen

Array of Structures

Arrays of Structures

 Structures can be defined in arrays

 Can be used in place of parallel arrays
const int NUM_STUDENTS = 20;

Student stuList[NUM_STUDENTS];

 Individual structures accessible using subscript notation

 Fields within structures accessible using dot notation:

cout << stuList[5].studentID;

Arrays of Structures-Example

Arrays of Structures- Example

Arrays of Structures- Example

Exercise 3

 Recall your solution in Exercise 2 (pg. 185)

 Add the following solution to the program:

– Initialize structure variables kemayan to the
value listed in Table 7.1.

– Display all the values in the variable to screen

Nested Structures

Nested Structures

A structure can contain another structure as a member:

struct PersonInfo

{ string name,

address,

city;

};

struct Student

{int studentID;

PersonInfo pData;

short yearInSchool;

double gpa;

};

Members of Nested Structures

Use the dot operator multiple times to refer to fields of
nested structures:

Student s;

s.pData.name = "Joanne";

s.pData.city = "Tulsa";

Exercise 4

 Refer to Exercise 1 No. 5 pg. 188 Lab 10

 Solve the problem

Structures as Function Arguments

Structures as Function Arguments

May pass members of struct variables to functions:

computeGPA(stu.gpa);

May pass entire struct variables to functions:

showData(stu);

 Can use reference parameter if function needs to modify
contents of structure variable

Excerpts from Program 11-7

Structures as Function
Arguments - Notes

 Using value parameter for structure can slow down a
program, waste space

 Using a reference parameter will speed up program, but
function may change data in structure

 Using a const reference parameter allows read-only access
to reference parameter, does not waste space, speed up
program

Revised showItem Function

Exercise 5

 Refer to Exercise 1 No. 6 pg. 189 Lab 10

 Solve the problem

Returning a Structure from a
Function

Returning a Structure from a
Function

 Function can return a struct:

Student getStudentData(); // prototype

stu1 = getStudentData(); // call

 Function must define a local structure
 for internal use

 for use with return statement

Returning a Structure from a
Function - Example

Student getStudentData()

{ Student tempStu;

cin >> tempStu.studentID;

getline(cin, tempStu.pData.name);

getline(cin, tempStu.pData.address);

getline(cin, tempStu.pData.city);

cin >> tempStu.yearInSchool;

cin >> tempStu.gpa;

return tempStu;

}

Returning a Structure from a
Function - Example

Program 11-8 (Continued)

Program 11-8 (Continued)

Exercise 6

 Refer to Exercise 3 No. 1 page 197 Lab 10

 Solve the problem

Pointer to Structure

Pointers to Structures

 A structure variable has an address

 Pointers to structures are variables that can hold the address
of a structure:

Student *stuPtr;

 Can use & operator to assign address:

stuPtr = & stu1;

 Structure pointer can be a function parameter

Accessing Structure Members
via Pointer Variables

Must use () to dereference pointer variable, not field within
structure:

cout << (*stuPtr).studentID;

 Can use structure pointer operator to eliminate () and use
clearer notation:

cout << stuPtr->studentID;

From Program 11-9

Unions

Unions

 Declared using union, otherwise the same as struct

 Similar to a struct, but
 all members share a single memory location, and

 only one member of the union can be used at a time

 Variables defined as for struct variables

Anonymous Union

 A union without a union tag:

union { ... };

Must use static if declared outside of a function

 Allocates memory at declaration time

 Can refer to members directly without dot operator

 Uses only one memory location, saves space

Enumerated Data Types

Enumerated Data Types

 An enumerated data type is a programmer-defined data
type. It consists of values known as enumerators, which
represent integer constants.

 Example:
enum Day { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,

FRIDAY };

 The identifiers MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, and FRIDAY, which are listed inside the
braces, are enumerators. They represent the values that
belong to the Day data type.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,

WEDNESDAY,THURSDAY,

FRIDAY };

Note that the enumerators are not strings, so they aren’t
enclosed in quotes.

They are identifiers.

Enumerated Data Types

 Once you have created an enumerated data type in your
program, you can define variables of that type. Example:

Day workDay;

 This statement defines workDay as a variable of the Day
type.

We may assign any of the enumerators MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, or FRIDAY to a variable of the
Day type. Example:

workDay = WEDNESDAY;

Enumerated Data Types

 So, what is an enumerator?

 Think of it as an integer named constant

 Internally, the compiler assigns integer values to the
enumerators, beginning at 0.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,

WEDNESDAY,THURSDAY,

FRIDAY };

In memory...

MONDAY = 0
TUESDAY = 1
WEDNESDAY = 2
THURSDAY = 3
FRIDAY = 4

Enumerated Data Types

Using the Day declaration, the following code...
cout << MONDAY << " "

<< WEDNESDAY << " “
<< FRIDAY << endl;

will produce this output:

0 2 4

Assigning an integer to an
enum Variable

 You cannot directly assign an integer value to an enum
variable. This will not work:
workDay = 3; // Error!

 Instead, you must cast the integer:
workDay = static_cast<Day>(3);

Assigning an Enumerator to
an int Variable

 You CAN assign an enumerator to an int variable. For
example:

int x;

x = THURSDAY;

 This code assigns 3 to x.

Comparing Enumerator
Values

 Enumerator values can be compared using the relational
operators. For example, using the Day data type the
following code will display the message "Friday is greater
than Monday.“

if (FRIDAY > MONDAY)

{

cout << "Friday is greater "

<< "than Monday.\n";

}

Comparing Enumerator Values -
example

Program 11-12 (Continued)

Enumerated Data Types

 Program 11-12 shows enumerators used to control a loop:

// Get the sales for each day.

for (index = MONDAY; index <= FRIDAY;

index++)

{

cout << "Enter the sales for day "

<< index << ": ";

cin >> sales[index];

}

Anonymous Enumerated
Types

 An anonymous enumerated type is simply one that does not
have a name. For example, in Program 11-13 we could have
declared the enumerated type as:

enum { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,

FRIDAY };

Using Math Operators with
enum Variables

 You can run into problems when trying to perform math
operations with enum variables. For example:

Day day1, day2;

// Define two Day variables.

day1 = TUESDAY;

// Assign TUESDAY to day1.

day2 = day1 + 1;

// ERROR! Will not work!

 The third statement will not work because the expression
day1 + 1 results in the integer value 2, and you cannot
store an int in an enum variable

Using Math Operators with
enum Variables

 You can fix this by using a cast to explicitly convert the result
to Day, as shown here:

// This will work.

day2 = static_cast<Day>(day1 + 1);

Using an enum Variable to Step
through an Array's Elements

 Because enumerators are stored in memory as integers, you
can use them as array subscripts. For example:

enum Day { MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY };

const int NUM_DAYS = 5;

double sales[NUM_DAYS];

sales[MONDAY] = 1525.0;

sales[TUESDAY] = 1896.5;

sales[WEDNESDAY] = 1975.63;

sales[THURSDAY] = 1678.33;

sales[FRIDAY] = 1498.52;

Using an enum Variable to Step
through an Array's Elements

 Remember, though, you cannot use the ++ operator on an
enum variable. So, the following loop will NOT work.

Day workDay; // Define a Day variable

// ERROR!!! This code will NOT work.

for (workDay = MONDAY; workDay <= FRIDAY;

workDay++)

{

cout << "Enter the sales for day "

<< workDay << ": ";

cin >> sales[workDay];

}

Using an enum Variable to Step
through an Array's Elements

 You must rewrite the loop’s update expression using a cast
instead of ++:

for (workDay = MONDAY; workDay <= FRIDAY;

workDay = static_cast<Day>(workDay + 1))

{

cout << "Enter the sales for day "

<< workDay << ": ";

cin >> sales[workDay];

}

Using an enum Variable to Step through
an Array's Elements - example

Using an enum Variable to Step through
an Array's Elements - example

Enumerators Must Be Unique
Within the same Scope

 Enumerators must be unique within the same scope. For
example, an error will result if both of the following
enumerated types are declared within the same scope:

enum Presidents { MCKINLEY, ROOSEVELT, TAFT };

enum VicePresidents { ROOSEVELT, FAIRBANKS,

SHERMAN };

ROOSEVELT is declared twice.

Declaring the Type and Defining
the Variables in One Statement

 You can declare an enumerated data type and define one or
more variables of the type in the same statement. For
example:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

This code declares the Car data type and defines a variable
named

sportsCar.

