Deadlock: Resource Allocation Graph (RAG)

System Develop

Resources

can be:

- ✓ physical (eg. Printers)
- ✓ logical (eg. A record in a database)

a process may utilize a resource in only the following order:

- Request: if the request cannot be granted immediately, then the requesting process must wait until it can acquire the resource.
- Use: the process can operate on the resource
- Release: the process releases the resource

∀partitioned into several

 R_1, R_2, \ldots, R_m

each consisting of some number of identical instances.

Deadlock

a state when every process in the set of processes is waiting for an event that can be caused only by another process in the set.

Deadlock Characterization

Types of Edges, E

Request eage: directed eage $P_i \rightarrow R_i$

Assignment edge: directed edge $R_i \rightarrow P_i$

can arise if four conditions hold simultaneously:

- ✓ <u>Mutual exclusion</u>: only one process at a time can use a resource
- ✓ Hold and wait: a process holding at least one resource
 is waiting to acquire additional resources held by
 other processes
- No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task
- ✓ Circular wait: there exists a set $\{P_0, P_1, ..., P_n\}$ of waiting processes such that P0 is waiting for a resource that is held by P_1 , P_1 is waiting for a resource that is held by P_2 , ..., P_{n-1} is waiting for a resource that is held by P_n , and P_n is waiting for a resource that is held by P_0 .

PREPARED BY:

- ID CHLYSE RUT (A17CS0056)
- AMIRAH SYAFIQAH BINTI ROSLAN (A17CS0012)
- AINA MARDHIAH BINTI ABDUL RUSLI (A17CS0007)
- NURUL NATASHA BINTI WAHI ANUAR (A17CS0285)