
GRAPH THEORY
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• A graph G consists of two finite sets:

 a nonempty set V(G) of vertices.

 a set E(G) of edges, where each edge is associated 
with a set consisting of either one or two vertices 
called its endpoints.

 f is a function, called an incidence function, that 
assign to each edge,            , a one element subset 
{v} or two elements subset {v , w}, where v and w are 
vertices. 

• We can write G as (V, E, f ) or (V, E ) or simply 
as G. 

eÎ E
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Definition



Example 1

a) Write a vertex set and the edge set, and give a table showing the 
edge-endpoint function. 

a) Find all edges that are incident on a, all vertices that are adjacent 
to a, all edges that are adjacent to e2, all loops, all parallel edges, 
all vertices that are adjacent to themselves and all isolated 
vertices. 

Given a graph as shown below, 

e9

e10

Note: Solution – Refer module page 91
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Example 2
• Let,

 V = 

 E = 

• And f be defined by:

 f(e1) =f(e2) ={v1 ,v2}

 f(e3) ={v4 ,v3}

 f(e4) =f(e6) =f(e6) ={v6 ,v3}

 f(e5) = {v2 ,v4} 

v1,v2,v3,v4,v5,v6,v7{ }

e1,e2,e3,e4,e5,e6,e7{ }

Question: What is the pictorial representation of G? 
* Solution – refer module (Fig. 4.5)
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(a)Adjacent Vertices

Two vertices that are connected by an edge are called 
adjacent; and a vertex that is an endpoint of a loop is 
said to be adjacent to itself. 

Example
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b) Isolated Vertex

Let G be a graph and v be a vertex in G. We say that v is 
an isolated vertex if it is not incident with any edge. 

Example
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c) Loop

An edge with just one endpoint is called a loop. 
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Example



d) Parallel Edges

Two or more distinct edges with the same set of 
endpoints are said to be parallel. 

10

Example

• e1 and e2 are parallel.
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 Let G be a graph and v be a vertex in G.

 The degree of v, written deg(v) or d(v) is the number 

of edges incident with v.

 Each loop on a vertex v contributes 2 to the degree of 

v.
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Example

deg(v1 )= 1; deg(v2)= 2; deg(v3)= 3; deg(v4)= 2

State the degree of each vertex for the following graph. 
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Exercise
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Exercise - Solution

Solution: deg(v1 )= 1; deg(v2)= 4; deg(v3)= 4; deg(v4)= 5
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a) Simple Graph

A graph G is called a simple graph if G does not contain 
any parallel edges and any loops. 

Example



18

b) Regular Graph

Let G be a graph and k be a nonnegative integer. G is 
called a k-regular graph if the degree of each vertex of 
G is k. 

Example

Fig.1: Graph A Fig.2: Graph B
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c) Connected Graph

A graph G is connected if given any vertices v and w in 
G, there is a path from v to w. 

Example

Fig.1: Connected graph Fig.2: Not connected graph
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d) Complete Graph

A simple graph with n vertices in which there is an edge 
between every pair of distinct vertices is called a 
complete graph on n vertices. This is denoted by kn . 

Example

K4
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e) Subgraph

A graph H is said to be a subgraph of a graph G if, every 
vertex in H is also a vertex in G, every edge in H is also an 
edge in G, and every edge in H has the same endpoints as 
it has in G.

Example
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 To write programs that process and manipulate 

graphs, the graphs must be stored, that is, 

represented in computer memory.

 A graph can be represented (in computer 

memory) in several ways.

 2-dimensional array: adjacency matrix and 

incidence matrix.  
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Let G be a graph with n vertices.

The adjacency matrix, AG is an nxn matrix [aij] such 
that,

aij= the number of edges from vi to vj, {undirected G}

or,
aij= the number of arrows from vi to vj, {directed G}

for all i, j = 1,2,….., n.

Adjacency Matrix
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Example 1

{Graph}

[Matrix]

V1          V2            V3 V4 V5 V6

V1        

V2            

V3

V4

V5

V6

AG =
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Example 2

{Graph}

[Matrix]

V1          V2            V3 V4
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Example 3

Draw the graph based on the following matrix:
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Example 3 - Solution



 Adjacency matrix is a symmetric matrix if it 
is representing an undirected graph, where

 If the graph is directed graph, the presented 
matrix is not symmetrical.

jiij aa 
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 Let G be a graph with n vertices and m edges.

 The incidence matrix, IG is an nxm matrix [aij] 
such that,











ij

jji

ji

ij

ve

eev

ev

a

at  loop a is  if2

loop anot  is but , of vertex endan  is  if1

, of vertex endan not  is  if0

Incidence Matrix
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Example

{Graph}

[Matrix]

Notice that the sum of the i-th row is the degree of vi.  

deg(v1 )= 2;
deg(v2)= 4;
deg(v3)= 3;
deg(v4)= 1
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Exercise
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Exercise - Solution

AG =     

0 1 0 1

1 0 0 0

0 0 1 1

1 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

v1    v2   v3   v4

 v1    

            v2   

            v3   

            v4

IG =     

1 0 0 1

1 0 0 0

0 2 1 0

0 0 1 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

e1    e2   e3   e4

 v1    

            v2   

            v3   

            v4

Adjacency matrix Incidence matrix



Exercise
Past Year 2015/2016
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Exercise Solution
Past Year 2015/2016
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Fifi Putih

Suri

Bob

Didi

Cheta

Jeep



Exercise
Past Year 2015/2016
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Exercise Solution
Past Year 2015/2016
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 Are these two graphs (G1 and G2) are same?

 When we say that 2 graphs are the same mean they are 
isomorphic to each other.
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Definition
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 If two graphs is isomorphic, they must have:

• the same number of vertices and edges, 

• the same degrees for corresponding vertices, 

• the same number of connected components, 

• the same number of loops and parallel edges,

• both graphs are connected or both graph are not connected,  

• pairs of connected vertices must have the corresponding pair of 

vertices connected. 

 In general, it is easier to prove two graphs are not isomorphic 
by proving that one of the above properties fails. 
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Example 1
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Example 1 - Solution

• Both graphs are simple and have the same number of vertices 
and the same number of edges.

• All the vertices of both graphs have degree 2.

• Define f :U V, where U = { u1, u2 , u3, u4} and V = { v1, v2 , v3, v4};
f(u1) = v1 ; f(u2) = v4 ; f(u3) = v3 ; f(u4) = v2 .
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• To verify whether G and H are isomorphic, we examine the 

adjacency matrix AG with rows and columns labeled in the order 

u1, u2 , u3, u4 , and the adjacency matrix AH with rows and 

columns labeled in the order v1, v2 , v3, v4 . 
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Exercise
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G1 G2

Q: Show that the following two graphs are isomorphic.



Exercise Solution

47

G1 G2

• Both have 5 vertices and 6 edges

• Both are connected and simple graph

• Both have 2 vertices with 3 degree and 3 vertices with 2 degree

• f(AG1
) = AG2

f(BG1
) = BG2

f(CG1
) = CG2

f(DG1
) = DG2

f(EG1
) = EG2

⸫ G1 and G2 are isomorphic



Exercise
Past Year 2015/2016
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Exercise Solution
Past Year 2015/2016
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• Both have 6 vertices and 8 edges

• Both are connected and simple graph

• Both have 1 vertex with 4 degree, 2 vertices with 3 degree and 3 vertices 

with 2 degree

• f(aA) = xB f(bA) = wB

f(cA) = uB f(dA) = yB

f(eA) = tB f(fA) = vB

⸫ A and B are isomorphic
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 A walk from v to w is a finite alternating sequence of adjacent 
vertices and edges of G. Thus a walk has the form

(v0 , e1 , v1 , e2 , v2 ,……, vn-1 , en , vn )

where the v’s represent vertices, the e’s represent 
edges, v = v0 , w = vn , and for i = 1,2,…,n. vi-1 and vi are the 

endpoints of ei .

 A trivial walk from v to w consist of the single vertex v.

 The length of a walk is the number of edges it has. 

Term and Description 
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 A trail from v to w is a walk from v to w that does not contain a 
repeated edge. 

 A path from v to w is a trail from v to w that does not contain a 
repeated vertex. 

 A closed walk is a walk that start and ends at the same vertex. 

 A circuit/cycle is a closed walk that contains at least one edge 
and does not contain a repeated edge. 

 A simple circuit is a circuit that does not have any other repeated 
vertex except the first and the last. 

Term and Description (cont.) 



Example 1 – Trail & Path   
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Note: 
Trail: No repeated edge (can repeat vertex). 
Path: No repeated vertex and edge.

• (1, a, 2, b, 3, c, 4, d, 2, e, 5) is a trail.

• (6, g, 5, e, 2, d, 4) is a path.
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Example 2 – Cycle/circuit   

Note: cycle –> start and end at same vertex, no repeated edge. 
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Example 3 – Simple Cycle

Note: Simple cycle –> start and end at same vertex, no repeated edge 
or vertex except for the start and end vertex. 
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Exercise 
Tell whether the following is either a walk,  trail, path, cycle, simple cycle, closed 
walk or none of these. 
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Exercise - Solution 
Tell whether the following is either a walk,  trail, path, cycle, simple cycle, closed 
walk or none of these. 

Trail

Walk; Trail

Simple cycle

Cycle
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The town of Konigsberg in Prussia (now Kaliningrad in Russia) 

was built at a point where two branches of the Pregel River 

came together. It consisted of an island and some land along 

the river banks. These were connected by seven bridges as 

shown in figure below:
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Problem: Starting at one land area, is it possible to 
walk across all of the bridges exactly once and return 
to the starting land area?

It is not possible to walk across all of the bridges 
exactly once and return to the starting land area. 
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Solution: Two additional bridges have been 
constructed on the Pregel river.

C



Euler Circuit/Cycle
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Let G be a graph. An Euler circuit for G is a circuit that

contains every vertex and every edges of G. That is, an

Euler circuit for G is a sequence of adjacent vertices and

edges in G that has at least one edges, starts and ends at

the same vertex, uses every vertex of G at least once,

and uses every edge of G exactly once.



Example 1
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Euler Trail
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Let G be a graph, and let v and w be two distinct vertices

of G. An Euler trail from v to w is a sequence of adjacent

vertices and edges that starts at v and ends at w, passes

through every vertex of G at least once, and traverses

every edge of G exactly once.
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Example 2



Theorem - Euler

66

 If G is a connected graph and every vertex has 
even degree, then G has an Euler circuit. 

 A graph has an Euler trail from v to w (v ≠ w) if 
and only if it is connected and v and w are the 
only vertices having odd degree. 
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Example 3

Vertex 1 2 3 4 5 6 7

Degree 2 4 4 4 2 2 4
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Example 4

Vertex 1 2 3 4 5 6

Degree 2 4 2 4 2 2
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Example 5

Vertex 1 2 3 4 5 6

Degree 2 3 3 2 2 2
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Exercise  

Q: Which of the following graphs has Euler circuit? 

Justify your answer. 

G1 G2
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Exercise Solution  

Q: Which of the following graphs has Euler circuit? 

Justify your answer. 

• G1 has Euler circuit since all vertices have even degree

• G2 does not has Euler circuit since 2 vertices (vertex a & b) have 

odd degree

G1 G2



Exercise
Past Year 2015/2016
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Exercise Solution
Past Year 2015/2016
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• The graph does not has Euler circuit because 2 vertices (vertex 

1 & 5) have odd degree

• Hence, the graph has Euler path

• 1-b-2-a-3-c-1-d-4-f-4-e-3-k-5-g-4-h-6-i-5
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Hamiltonian Circuits
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Given a graph G, a Hamiltonian circuit for G is a simple
circuit that includes every vertex of G (but doesn’t need to
include all edges). That is, a Hamiltonian circuit for G is a
sequence of adjacent vertices and distinct edges in which
every vertex of G appears exactly once, except for the first
and the last, which are the same.
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Example

 Sir William Rowan Hamilton marketed a puzzle in the 
mid-1800s in the form of dedocahedron. 

 Each corner bore the name of a city.
 The problem was to start at any city, travel along the 

edges, visit each city exactly one time and return to the 
initial city. 
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(a): The graph (b): Hamilton circuit
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Example

(1, a, 2, b, 3, f, 5, e, 4, k, 6, l, 7, m, 1) 

- Visit each vertex just once. 

This graph has a Hamilton circuit.
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Example

(1, a, 2, b, 3, g, 6, f, 3, e, 5, d, 4, c, 3, h, 1)

- Vertex (3) has to be visited more than once.

This graph does not contain Hamilton circuit.
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Example

Question: Is this graph has Hamiltonian cycle?

Solution: No. (1, 4, 3, 2, 5, 4, 1)

- Vertex (4) has to be visited more than once.
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Exercise

Question: Is this graph has Hamiltonian cycle?
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Exercise - Solution

Manually check: This graph has Hamiltonian cycle.

Each vertex has to be visited only once. 

For example: (1, 2, 3, 4, 5, 6, 7, 1)
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Exercise

Question: Prove that this graph has Hamiltonian cycle.

a

b c

d

e

f

g

h
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Exercise - Solution

Question: Prove that this graph has Hamiltonian cycle.

a

b c

d

e

f

g

h

Solution: (1, b, 3, c, 2, d, 4, f, 5, h, 1 )
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Exercise
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Exercise - Solution

Solution: (1, b, 6, g, 5, i, 4, h, 3, d, 2, a, 1)



Exercise
Past Year 2015/2016
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Exercise Solution
Past Year 2015/2016

88

• The graph has Hamiltonian cycle

• 7-f-3-c-4-d-1-a-2-e-6-k-5-m-8-h-7
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• Let G be a weighted graph.

• Let u and v be two vertices in G, and let P be 
a path in G from u to v.

• The length of path P, written L(P), is the sum 
of the weights of all the edges on path P.

• A shortest path from a vertex to another 
vertex is a path with the shortest length 
between the vertices.

Shortest  Path

90



Dijkstra’s Shortest Path Algorithm

• 1. S :=∅

• 2. N:= V

• 3. For all vertices, u 
 V, u≠a, L(u):=∞

• 4. L(a):=0

http://en.wikipedia.org/wiki/Dijkstra
%27s_algorithm
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• 5. While z ∉ S do,

5.a :Let v  N be such that 

L(v)=min{L(u)|u  N}

5.b : S:= S  {v}

5.c : N:=N – {v}

5.d : For all w  N such that    
there is an edge from v 
to w

5.d.1: If L(v)+W[v,w] < L(w) 
then L(w)=L(v)+W[v,w]

http://en.wikipedia.org/wiki/Dijkstra's_algorithm


Example

What is the shortest path from a to z?

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7
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S=∅
N= {a,v1,v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞

∞

∞

∞

∞

4
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S={a}
N= {v1,v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞

∞

∞

∞

15a

L(a)+W[a,v4] <L(v4)
0+15=15 < ∞
L(v4)=15

4
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S={a}
N= {v1,v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞

∞

∞

15a

3a

L(a)+W[a,v1] <L(v1)
0+3= 3 < ∞
L(v1)=3

4
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S={a}
N= {v1,v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞ ∞

L(a)+W[a,v2] <L(v2)
0+4= 4 < ∞
L(v2)=4

4a

15a

3a

4
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S={a}
N= {v1,v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞ ∞

choose v1
because
L(v1)=3 =
min{L(u)|u  N}

3a

4a

15a

4
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S={a, v1}
N= {v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞ ∞

L(v1)+W[v1,v4]<L(v4)
3+6= 9 < 15
L(v4)=9

9v1

3a

4a

4
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S={a, v1}
N= {v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞

9v1

3a

4a

10v1

L(v1)+W[v1,v3]<L(v3)
3+7= 10 < ∞
L(v4)=10

4
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S={a, v1}
N= {v2,v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞

9v1

3a

4a

10v1

choose v2
because
L(v2)=4 = min{L(u)|u  N}

4
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S={a, v1, v2}
N= {v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

∞

9v1

3a

4a

10v1

L(v2)+W[v2,v3]<L(v3)
4+8= 12 > 10
L(v3) remains the same.

4

101



S={a, v1, v2}
N= {v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

∞

9v1

3a

4a

10v1

L(v2)+W[v2,v5]<L(v5)
4+4= 8 < ∞
L(v5)=8

4 8v2
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S={a, v1, v2}
N= {v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

9v1

3a

4a

10v1

L(v2)+W[v2, z]<L(z)
4+9= 13 < ∞
L(z)=13

4 8v2

13v2
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S={a, v1, v2}
N= {v3,v4,v5,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

9v1

3a

4a

10v1

choose v5
because
L(v5)=8 = min{L(u)|u  N}

4 8v2

13v2
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S={a, v1, v2, v5}
N= {v3,v4, v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

9v1

3a

4a

10v1

4 8v2

13v2

L(v5)+W[v5, v4]<L(v4)
8+3= 11 > 9
L(v4) remains the same
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S={a, v1, v2, v5}
N= {v3,v4, v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

9v1

3a

4a

10v1

4 8v2

13v2

L(v5)+W[v5, z] <L(z)
8+7= 15 > 13
L(z) remains the same
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S={a, v1, v2, v5}
N= {v3,v4, v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

∞

9v1

3a

4a

10v1

4 8v2

13v2

choose v4
because
L(v4)=9 = min{L(u)|u  N}

10
7



S={a, v1, v2, v5,v4}
N= {v3,v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

9v1

3a

4a

10v1

4 8v2

13v2

L(v4)+W[v4, v6]<L(v6)
9+7= 16 < ∞
L(v6) = 16

16v4
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S={a, v1, v2, v5,v4}
N= {v3, v6, z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

9v1

3a

4a

10v1

4 8v2

13v2

choose v3
because
L(v3)=10 = min{L(u)|u  N}

16v4
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S={a, v1, v2, v5,v4, v3}
N= {v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

9v1

3a

4a

10v1

4 8v2

13v2

14v3

L(v3)+W[v3, v6]<L(v6)
10+4= 14 < 16
L(v6) = 14
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S={a, v1, v2, v5,v4,v3}
N= {v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

9v1

3a

4a

10v1

4 8v2

13v2

14v3

L(v3)+W[v3, z] <L(z)
10+5= 15 > 13
L(z) remains the same
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S={a, v1, v2, v5,v4,v3}
N= {v6,z}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

9v1

3a

4a

10v1

4 8v2

13v2

14v3

choose z
because
L(z)=13 = min{L(u)|u  N}
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S={a, v1, v2, v5,v4,v3,z}
N= {v6}

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

9v1

3a

4a

10v1

4 8v2

13v2

14v3

The loop terminates because z  S
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Shortest path from a to z is a -> v2-> z, with the 
length 13.

a

v1

v2

v3

v4

v5

v6

z

15

9

4

3 7

8

6 7

3

3

5

4

7

start

0

9v1

3a

4a

10v1

4 8v2

13v2

14v3
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Table – Djikstra Algorithm
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Exercise   

Q: Given a weighted digraph, find the shortest path from S to T, using 

Djikstra Algorithm. 

Note: Weights are arbitrary numbers (i.e., not necessarily distances). 



Exercise - Solution

i S N L(S) L(A) L(B) L(C) L(D) L(E) L(F) L(T)

0 Ø {S,A,B,C,D,E,F,T} 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 {S} {A,B,C,D,E,F,T} 0 9 14 15 ∞ ∞ ∞ ∞

2 {S,A} {B,C,D,E,F,T} 0 9 14 15 33 ∞ ∞ ∞

3 {S,A,B} {C,D,E,F,T} 0 9 14 15 32 44 ∞ ∞

4 {S,A,B,C} {D,E,F,T} 0 9 14 15 32 35 ∞ 59

5 {S,A,B,C,D} {E,F,T} 0 9 14 15 32 34 ∞ 51

6 {S,A,B,C,D,E} {F,T} 0 9 14 15 32 34 45 40

7 {S,A,B,C,D,E,T} {F} 0 9 14 15 32 34 45 40
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Exercise Solution  

The shortest path from S to T, having weight 40, is S – B – D – E – T   

Note: Weights are arbitrary numbers (i.e., not necessarily distances). 



Exercise
Past Year 

2015/2016

119



Exercise Solution
Past Year 2015/2016

i S N L(A) L(B) L(C) L(D) L(E) L(F) L(G) L(H)

0 Ø {A,B,C,D,E,F,G,H} 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 {A} {B,C,D,E,F,G,H} 0 1 2 ∞ ∞ ∞ ∞ ∞

2 {A,B} {C,D,E,F,G,H} 0 1 2 6 4 ∞ ∞ ∞

3 {A,B,C} {D,E,F,G,H} 0 1 2 5 4 6 ∞ ∞

4 {A,B,C,E} {D,F,G,H} 0 1 2 5 4 6 11 ∞

5 {A,B,C,E,D} {F,G,H} 0 1 2 5 4 6 11 ∞

6 {A,B,C,E,D,F} {G,H} 0 1 2 5 4 6 11 8

7 {A,B,C,E,D,F,H} {G} 0 1 2 5 4 6 11 8

120

• Minimum distance from city A to city H is 8
• The shortest path is  A – C – F - H



TREE



Definition 1. A tree is a connected undirected 

graph with no simple circuits.

Theorem 1. An undirected graph is a tree if and 

only if there is a unique simple path between any 

two of its vertices.

Theorem 2 . A tree with m-vertices has m-1 edges

Introduction
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Which graphs are trees?

a) b)

c)



Solution

tree
vertices = 6
edges = 5

Not a  tree
vertices = 6
edges = 7

tree
vertices = 9
edges = 8



Rooted tree

Definition 2. A rooted tree is a tree in which one 
vertex has been designed as the root and every 
edge is directed away from the root. 

a

b

f

c e
d

g



Rooted Tree - Terminologies



Rooted Tree - Terminologies



Rooted Tree - Terminologies



Rooted Tree - Terminologies



Examples

full binary tree full 3-ary tree full 5-ary tree not full 3-ary tree 



Properties of Trees

• Theorem : A tree with n nodes has n-1 edges

• Theorem : A full m-ary tree with i internal 
vertices contains n  mi + 1 vertices.

Cor. A full m-ary tree with n vertices contains 
(n-1)/m internal vertices, and hence 
n - (n-1)/m = ((m-1)n+1)/m leaves



Properties of Trees

Theorem – A full m-ary tree with

• n vertices has i = (n-1)/m internal vertices and 
l = [(m-1)n+1]/m leaves

• i internal vertices has n =mi+1 vertices and 

l = (m-1)i + 1 leaves

• l leaves has n =(ml-1)/(m-1) vertices and 

i =(l-1)/(m-1) internal vertices



Example



Solution

• The chain letter can be represented using 4-ary
tree. The internal vertices correspond to people 
who sent out the letter, and the leaves 
correspond to people who did not send it out. 
Since 100 people did not send out the letter, the 
number of leaves in this rooted tree is, l=100. The 
number of people have seen the letter is 
n=(4x100-1)/(4-1)=133. The number of internal 
vertices is 133-100=33, people sent the letter.



Exercise

• How many matches are played in a tennis 
tournament of 27 players



Solution

• A leaf for each player, l=27

• An internal node for each matches: m=2

• Number of matches: 26
12

127

1

1


-

-


-

-

m

l



Properties of Trees

• The level of a vertex v in a rooted tree is the 
length of the unique path from the root to this 
vertex.
The level of the root is defined to be zero.
The height of a rooted tree is the maximum of 
the levels of vertices.



Example



Properties of Trees

• Definition: A rooted m-ary tree of height h is 
balanced if all leaves are at levels h or h-1.

• Theorem. There are at most mh leaves in an m-
ary tree of height h.



Example

Which of the rooted trees shown below
are balanced?

Sol. T1, T3



Tree Traversal

• Inorder – left subtree, root, right sub-tree

• Preorder: root, left-subtree, right subtree

• Post-order : left subtree, right sub-tree, root



Preorder Traversal

Procedure preorder(T: ordered rooted tree)

r := root of T

list r

for each child c of r from left to right

begin

T(c) := subtree with c as its root

preorder(T(c))

end 



Inorder Traversal

Procedure inorder(T: ordered rooted tree)

r := root of T

If r is a leaf then list r

else

begin

l := first child of r from left to right

T(l) := subtree with l as its root

inorder(T(l))

list r

for each child c of r except for l from left to right

T(c) := subtree with c as its root

inorder(T(c))

end 



Postorder Traversal

Procedure postorder(T: ordered rooted tree)

r := root of T

for each child c of r from left to right

begin

T(c) := subtree with c as its root

postorder(T(c))

end 

list r
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Exercise

Give the inorder, preorder, and postorder 
traversals for the following tree.
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Solution
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Exercise

Trace the inorder, preorder, and postorder traversals 
for the following tree.
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Solution
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Exercise

Find the inorder, preorder, and postorder 
traversals for the following tree.
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Solution



Spanning Trees

• A spanning tree is a simple graph that is a 
subgraph of G and contains every vertex of G
and is a tree.

A connected 
undirected graph

Four spanning trees of the graph



Minimum Spanning Tree (MST)

• A Minimum Spanning Tree  is a spanning tree 
on a weighted graph that has minimum total 
weight.

• Example

a b

c d

5

7

32

4

6
5

T1= 10

2 3

a b

c d

a aab b

c d

b

c dc d

2 6

4

2 37

5

3

4
T2= 12 T3= 12 T4= 12
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Application of MST: an example

• In the design of electronic circuitry, it is often 
necessary to make a set of pins electrically 
equivalent by wiring them together.

• Running cable TV to a set of houses. What’s the least 
amount of cable needed to still connect all the 
houses?



Finding MST

• Kruskal’s algorithm: start with no nodes or 
edges in the spanning tree and repeatedly add 
the cheapest edge that does not create a cycle



Kruskal algorithm

Procedure Kruskal (G: weighted connected undirected graph 
with n vertices)

T:= empty graph

for i := 1 to n-1

begin

e:= any edge in G with smallest weight that does not 

form a simple circuit when added to T

T:= T with e added

end (T is a minimum spanning tree of G)



A cable company want to connect five villages to their network     which 
currently extends to the market town of Avonford. What is the minimum 
length of cable needed?

Avonford Fingley

Brinleigh Cornwell

Donster

Edan

2

7

4
5

8 6
4

5

3

8

Example



We model the situation as a network, then the problem 
is to find the minimum connector for the network

A F

B C

D

E

2

7

4
5

8 6
4

5

3

8



A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8

List the edges in 

order of size:

ED  2

AB  3

AE  4

CD  4

BC  5

EF  5

CF  6

AF  7

BF  8

CF  8

Kruskal’s Algorithm



Select the shortest

edge in the network

ED  2

Kruskal’s Algorithm

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8



Select the next shortest

edge which does not

create a cycle

ED  2

AB  3

Kruskal’s Algorithm

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8



Select the next shortest

edge which does not

create a cycle

ED  2

AB  3

CD  4 (or AE  4)

Kruskal’s Algorithm

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8



Select the next shortest

edge which does not

create a cycle

ED  2

AB  3

CD  4 

AE  4

Kruskal’s Algorithm

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8



Select the next shortest

edge which does not

create a cycle

ED  2

AB  3

CD  4 

AE  4

BC  5 – forms a cycle

EF  5

Kruskal’s Algorithm

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8



All vertices have been

connected.

The solution is

ED  2

AB  3

CD  4 

AE  4

EF  5

Total weight of tree: 18

Kruskal’s Algorithm

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8



Walk-Through
Consider an undirected, weight graph

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10



Sort the edges by increasing edge weight

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Accepting edge (E,G) would create a cycle



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4 

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H
B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4 

(A,H) 5 

(D,F) 6

(A,B) 8

(A,F) 10



Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H
B

F

E

D

C

G

2

3

3

3

edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4 

(A,H) 5 

(D,F) 6

(A,B) 8

(A,F) 10

Done

Total Cost =  dv = 21

4

}not 
considered


