
CHAPTER 5

FINITE AUTOMATA

1prepared by Razana Alwee

2prepared by Razana Alwee

3prepared by Razana Alwee

prepared by Razana Alwee 4

prepared by Razana Alwee 5

prepared by Razana Alwee 6

prepared by Razana Alwee 7

prepared by Razana Alwee 8

prepared by Razana Alwee 9

prepared by Razana Alwee 10

prepared by Razana Alwee 11

prepared by Razana Alwee 12

prepared by Razana Alwee 13

prepared by Razana Alwee 14

prepared by Razana Alwee 15

prepared by Razana Alwee 16

prepared by Razana Alwee 17

prepared by Razana Alwee 18

prepared by Razana Alwee 19

prepared by Razana Alwee 20

prepared by Razana Alwee 21

prepared by Razana Alwee 22

prepared by Razana Alwee 23

prepared by Razana Alwee 24

prepared by Razana Alwee 25

prepared by Razana Alwee 26

prepared by Razana Alwee 27

prepared by Razana Alwee 28

prepared by Razana Alwee 29

prepared by Razana Alwee 30

prepared by Razana Alwee 31

ANSWER

prepared by Razana Alwee 32

prepared by Razana Alwee 33

prepared by Razana Alwee 34

prepared by Razana Alwee 35

prepared by Razana Alwee 36

prepared by Razana Alwee 37

prepared by Razana Alwee 38

prepared by Razana Alwee 39

prepared by Razana Alwee 40

prepared by Razana Alwee 41

prepared by Razana Alwee 42

prepared by Razana Alwee 43

prepared by Razana Alwee 44

prepared by Razana Alwee 45

prepared by Razana Alwee 46

prepared by Razana Alwee 47

prepared by Razana Alwee 48

prepared by Razana Alwee 49

prepared by Razana Alwee 50

prepared by Razana Alwee 51

prepared by Razana Alwee 52

prepared by Razana Alwee 53

prepared by Razana Alwee 54

prepared by Razana Alwee 55

prepared by Razana Alwee 56

prepared by Razana Alwee 57

prepared by Razana Alwee 58

prepared by Razana Alwee 59

prepared by Razana Alwee 60

Exercise : Designing Finite Automata

1. Design a finite automaton (with input symbols a
and b) that accepts the language consisting all
sequences with at least two a’s.

2. Design a finite automaton (with input symbols a
and b) that accepts the language consisting all
sequences with an even number of b’s.

3. Design a finite automaton (with input symbols a
and b) that accepts the language consisting all
sequences with at least two a’s and an even
number of b’s.

62

SOLUTION 1 Design a finite automaton
(with input symbols a and b) that accepts
the language consisting all sequences with
at least two a’s.

63

64

FSM Examples in daily live

65

o Vending Machines
o Traffic Lights
o Alarm Clock
o Microwave

Each of these devices can be thought of as a reactive
system – that is because each of them work by
reacting to signals or inputs from the external world

FSM Design - A simple torch

o The boxes are the
possible states for the
machine.

o The arrows indicate a
transition between two
states. The pointer
indicates the direction of
the change.

o Each transition is
labelled with the input
that caused the
transition to occur.

FSM Design - A combination lock

67

o The arrow pointing
into the locked state
indicates the initial
state.

o The double circle for
the unlocked state
indicates the goal or
accepting state.

o It has a keypad with
the digits 0 - 9. You
need to enter the
combination 1, 3 & 5
to unlock the treasure.

68

FSM design – Carbonated water
vending machine

o Costs for each can of carbonated sugar water is
15p.

o When 15p has been inserted into the machine,
a can of carbonated sugar water is released.

o Three states : Got 0, Got 5p and Got 10p.
o When the machine has no money entered

towards the cost of the can, it is in the
state Got 0.

o Inserting coinage changes the state.

o Machine can provide for the
different ways that you can
arrive at 15p using the two
coins. The machine accepts
only 5p and 10p coinage.

o If two 10p coins are inserted,
a can is released and the
machine moves to the Got5
state.

o An extension to this machine
might be to cater for the
release of change after or
before the purchase is
completed.

FSM Design – Water vending machine

71

o Assume that all drinks are 25 cents.
o Machine receives coins only, allows user

to select drink when the required
amount has been met.

o If amount deposited is over 25 cents,
retain the remainder.

o Assume that coin insertions are
synchronized with the clock (i.e. implicit
no-op transition if no coins are present).

o States : amount of money deposited (0,
5, 10, 15, 20).

o Transitions : coin being inserted (5, 10,
25).

o Output: “V” (deliver drink), “–” (no drink)

72

73

FSM Design – Ticket machine

o In the case of a parking ticket machine, it will
not print a ticket when you press the button
unless you have already inserted some
money.

o Thus the response to the print button
depends on the previous history of the use of
the system.

o Inputs : inserting money (m), requesting
ticket (t), requesting refund (r).

o Non-empty set of states : unpaid (1), paid (2).
o Outputs : print ticket (p), deliver refund (d)

74

75

FSM Design – Turnstile machine

o Used to control access to subways and amusement
park rides, is a gate with three rotating arms at
waist height, one across the entryway.

o Two possible states: Locked and Unlocked. Two
possible inputs that affect its state: putting a coin
in the slot (coin) and pushing the arm (push).

o In the locked state, pushing on the arm has no
effect; no matter how many times the input push
is given, it stays in the locked state. Putting a coin
in – that is, giving the machine a coin input – shifts
the state from Locked to Unlocked.

o In the unlocked state, putting additional coins in
has no effect; that is, giving additional coin inputs
does not change the state. However, a customer
pushing through the arms, giving a push input,
shifts the state back to Locked.

76

State transition table

77

State diagram

FSM Design - Candy Machine

• Consider a vending machine that

– Accepts nickels (5 cents), dimes (10 cents), and
quarters (25 cents), crediting the amount.

– If the total credit is more than 25, it returns the
difference so only 25 cents credit remains.

– Dispenses a candy bar if the candy button is pushed
and there is 20 cents credit.

– Dispenses a candy bar and returns 5 cents if the candy
button is pushed and there is 25 cents credit.

– Dispenses a soda if the soda button is pushed and
there is 25 cents credit.

Candy Machine States

• The vending machine can be in different states
based on the amount of money that has been
credited to the user.

• Change is returned after 25 cents, and all coins
are multiples of 5.

• Thus, the machine can be in the following states:
– 0 cents credit (state S0)

– 5 cents credit (state S1)

– 10 cents credit (state S2)

– 15 cents credit (state S3)

– 20 cents credit (state S4)

– 25 cents credit (state S5)

Candy Machine Input/Output

• The machine can accept the following inputs
– A dime (10 cents) inserted

– A nickel (5 cents) inserted

– A quarter (25 cents) inserted

– Candy button pushed (CB)

– Soda button pushed (SB)

• The machine has the following possible outputs
– A dime (10 cents) returned

– A nickel (5 cents) returned

– A quarter (25 cents) returned

– A candy bar (C) dispensed

– A soda (S) dispensed

– Nothing (n) is returned or dispensed

Candy Machine FSM

• We now have enough information to construct our finite-
state machine.

• For each possible input and each possible state, we need
to know what to output (if anything) and what state the
machine should go to.

• For instance:

– If the machine is in state S3 (15 cents credit) and

– a quarter (25 cents) is input

– the machine should transition into state S5 (25 cents credit) and

– 15 cents (a dime and nickel) should be output.

• We can construct a state diagram and/or a state table by

considering every possible input on every possible state.

Candy Machine State Diagram

Candy Machine State Table

Next State Output

Input Input

State 5 10 25 CB SB 5 10 25 CB SB

S0 S1 S2 S5 S0 S0 n n n n n

S1 S2 S3 S5 S1 S1 n n 5 n n

S2 S3 S4 S5 S2 S2 n n 10 n n

S3 S4 S5 S5 S3 S3 n n 15 n n

S4 S5 S5 S5 S0 S4 n 5 20 Candy n

S5 S5 S5 S5 S0 S0 5 10 25 Candy,5 Soda

FSM Definition

• Definition: A finite-state machine is a 6-tuple M=(S, I, O, f,
g, S0) where
– S is a finite set of states

– I is a finite input alphabet

– O is a finite output alphabet

– f:SIS is a transition function from each state-input pair to a
state

– g:SIO is a output function from each state-input pair to an
output

– S0 is the initial state

FSM Representations

• As we have already seen, there are two common
ways of representing finite-state machines

– A state table is used to represent a finite-state machine
by giving the values of the functions f and g.

– A state diagram is a directed graph representation of a
finite-state machine.

State Tables

• A state table is organized as follows

Output

Input

5 10 25 CB SB

n n n n n

n n 5 n n

n n 10 n n

n n 15 n n

n 5 20 Candy n

5 10 25 Candy,5 Soda

State

S0

S1

S2

S3

S4

S5

Next State

Input

5 10 25 CB SB

S1 S2 S5 S0 S0

S2 S3 S5 S1 S1

S3 S4 S5 S2 S2

S4 S5 S5 S3 S3

S5 S5 S5 S0 S4

S5 S5 S5 S0 S0

•The second half are also indexed

by the inputs

•The entries in the table give the

value of the function g – that is, the

outputs.

The rows are indexed by the states.

The columns are split into two groups:

•The first half are indexed by the inputs

•The entries in the table give the value of the

function f – that is the new states

State Diagram

• A state diagram is organized as follows

– The nodes in the graph represent the states.

Each edge is labeled with a pair (x,y), where

An edge (Si,Sj) occurs if some input causes a transition

from Si to Sj

The edges in the graph represent the transitions.

•x is the input which (along with
the state) causes the transition

•y is the output triggered by the
state-input pair.

Example: Unit Delay

• In some electronic devices, it is necessary to use a unit-
delay machine.

• That is, whatever is input into the machine should be
output from the machine, but delayed by a specific
amount of time.

• For instance, given a string of binary numbers x1, x2, …, xn,
the machine should produce the string 0,x1, x2, …, xn-1.

• We want to use a finite state machine to model the
behavior of a unit-delay machine.

• What should a state in this machine represent?

• One possibility is that a state represents the last input bit.

• Thus we need a state for “1” and a state for “0”

• We also need start state.

Unit Delay States
• We will use the following states (that memorize last bit;

except S0)
– State S0 is the start state
– State S1 occurs if the previous input was 1
– State S2 occurs if the previous input was 0

• We can easily construct the state table for the unit delay
machine by realizing that
– When the input is 0, we always transition to state S2

– When the input is 1, we always transition to state S1

– When we are in state S1 we always output 1 (since the
previous input was 1)

– When we are in state S2 we always output 0 (since the
previous input was 0)

– When we are in state S0 we always output 0 (since we
always output 0 first)

Unit Delay State Table/Diagram

• Here is the state table and state diagram based on our
previous observations.

Next State Output

Input Input

State 0 1 0 1

S0 S2 S1 0 0

S1 S2 S1 1 1

S2 S2 S1 0 0

What’s output of 101011?

FSM Design – Binary adder

• We want to construct a finite state machine that will add
two numbers.

• The input is two binary numbers, (xn…x1x0)2 and (yn…y1y0)2

• At each step, we can compute (xi+yi) starting with (x0+y0).
– If (xi+yi)=0, we output 0.

– If (xi+yi)=1, we output 1.

– If (xi+yi)=2, we have a problem.

• The problem is we need a carry bit.

• In fact, our computation needs to know the carry bit at
each step (so we compute xi+yi+ci at each step), and be
able to give it to the next step.

• We can take care of this by using states to represent the
carry bit.

Binary Adder States

• We will use the following states
– State S0 occurs if the carry bit is 0

– State S1 occurs if the carry bit is 1

• Since when we begin the computation, there is no carry,

we can use S0 as the start state,

• So, how does which state we are in affect the output?

• If we are in state S0 (we have a carry of 0)
– If (xi+yi)=0, we output 0, and stay in state S0

– If (xi+yi)=1, we output 1, and stay in state S0

– If (xi+yi)=2, we output 0, and go to state S1

• If we are in state S1 (we have a carry of 1)
– If (xi+yi +1)=1, we output 1, and go to state S0

– If (xi+yi +1)=2, we output 0, and stay in state S1

– If (xi+yi +1)=3, we output 1, and stay in state S1

Binary Adder State Table/Diagram

• From the previous observations, we can construct the
state table and state diagrams

• for the binary adder

Next State Output

Input Input

State 00 01 10 11 00 01 10 11

S0 S0 S0 S0 S1 0 1 1 0

S1 S0 S1 S1 S1 1 0 0 1

Construct a state table for the finite-state machine in Fig. 3.

Find the output string for the input 101011

Answer: 001000

Input, output

Output of 101011? 001000

