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• The concept of set is 
basic to all of 
mathematics and 
mathematical 
applications.

• A set is a well-defined 
collection of distinct 
objects.

• These objects are 
called members or 
elements of the set.

Sets

Sets

Example

• A is a set of all positive 
integers less than 10,  

A={1, 2, 3, 4, 5, 6, 7, 8, 9}

• B is a set of first 5 positive 
odd integers, 

B={1, 3, 5, 7, 9}

• C is a set of vowels, 

C={a, e, i, o, u}
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• A set is determined by its 
elements and not by any 
particular order in which 
the element might be listed.

• The elements making up a 
set are assumed to be 
distinct, we may have 
duplicates in our list, only 
one occurrence of each 
element is in the set. 

Sets
Sets

• Example, A={1, 2, 3, 4}, 
A might just as well be 
specified as              
{2, 3, 4, 1} or {4, 1, 3, 2}

• Example,

{a, b, c, a, c}              {a, b, c}

{1, 3, 3, 5, 1}             {1, 3, 5}
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• Use uppercase letters 
A, B, C … to denote 
sets, lowercase denote 
the elements of set.

• The symbol  stands 
for ‘belongs to’

• The symbol  stands 
for ‘does not belong to’

Sets
Sets

Example

• X={ a, b, c, d, e },

bX and mX

• A={{1}, {2}, 3, 4},   

{2}A and  1A
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• If a set is a large finite set 
or an infinite set, we can 
describe it by listing a 
property necessary for 
memberships

• Let S be a set, the notation, 

A= {x | x S, P(x)} or  A= {x 

S | P(x)} means that A is 
the set of all elements x of 
S such that x satisfies the 
property P.

Sets
Sets

Example

• A={1, 2, 3, 4, 5, 6} 
A={x | x Z, 0< x <7}

if Z denotes the set of 
integers.

• B={1, 2, 3, 4, …}

B={x | xZ, x>0},  
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example
Set notation
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• If every element of A is an 
element of B, we say that 
A is a subset of B and 
write   A  B.

A=B,

if A  B and B  A

• The empty set () is a 
subset of every set.

Subset

Example

A={1, 2, 3}

Subset of A,

, {1}, {2}, {3}, 
{1, 2}, {1, 3}, 
{2, 3} {1, 2, 3} 

Note:  
A is a subset of A
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• If A is a subset of B
and A does not 
equal B, we say 
that A is a proper 
subset of B (A  B
and AB (B  A))

• A proper subset of 
a set A is a subset
of A that is not 
equal to A ({1,2,3} 
 A)

Proper subset

Example
• A={1, 2, 3}
Proper subset of A,
, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

• B={1, 2, 3, 4, 5, 6}, A = {1, 2, 3}.
Thus, A is proper subset of B.

• A={a,b,c,d,e,f,g,h}, B={b,d,e}
C={a,b,c,d,e}, D={r,s,d,e}

Thus, B and C are proper subset of A
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Empty set
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Equal set

Example 
A={a, b, c}, 

B={b, c, a}, A=B

C={1, 2, 3, 4} , 

D={x | x is a positive integer and 2x < 10}, C=D
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Equivalent set

Example 

A: {A, B, C, D, E}

B: {1, 2, 3, 4, 5}, A and B is equivalent.

• Note : An equivalent set is simply a set with an equal number 
of elements. The sets do not have to have the same exact 
elements, just the same number of elements. 
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Finite sets

Example 

A= {1, 2, 3, 4} 

B = {x | x is an integer, 1 < x < 4}

Note : There exists a nonnegative integer n such that A has n
elements (A is called a finite set with n elements)
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Infinite sets

Example 

• C = {5, 6, 7, 8, 9, 10}  (finite set)

• B = {x | x is an integer, 10 < x < 20} (finite set)

• D = {x | x is an integer,  x > 0} (infinite set)
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Universal set

Example 

• The sets A={1,2,3}, B={2,4,6,8} and C={5,7}

• Universal set, U={1,2,3,4,5,6,7,8}
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• Let S be a finite set with n distinct elements, 
where n0.

• Then we write |S|=n and say that the 
cardinality (or the number of elements) of S
is n. 

• Example

A= {1, 2, 3}, |A|=3

B= {a,b,c,d,e,f,g},  |B|=7

Cardinality of Set
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• The set of all subsets of a set A, denoted P(A), is 
called the power set of A., P(A)= {X | X  A}

• If |A|=n, then |P(A)| = 2n

Example

• A={1,2,3}

• The power set of A,

P(A)= {, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }

Notice that |A| = 3, and |P(A)| = 23 = 8

Power Set
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Summary
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• The union of two sets A and B, denoted by    
A  B, is defined to be the set

A  B = { x | x  A or x  B}

• The union consists of all elements belonging 
to either A or B (or both)

Union
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• Venn diagram of A  B

Union

If A and B are finite sets, the 
cardinality of A  B,

| A  B| = |A| + |B|  |A  B|
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• The intersection of two sets A
and B, denoted by A  B, is 
defined to be the set

A  B = { x | x  A and x  B}

• The intersection consists of all 
elements belonging to both A
and B.

Intersection

Example 

A={1, 2, 3, 4, 5, 6}, B={2, 4, 6, 8, 10} and C={ 1, 2, 8, 10 }

A  B = {2, 4, 6}

A  C = {1, 2}

C  B = {2, 8, 10}

A  B  C = {2}

22



• Two sets A and B
are said to be 
disjoint if,

A  B = 

Disjoint

Example

A = {1, 3, 5, 7, 9, 11}

B = {2, 4, 6, 8, 10}

A  B = 
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• The set

AB= {x | x  A
and x  B}

is called the 
difference.

• The difference A
B consists of all 
elements in A that 
are not in B.

Difference

Example

A= { 1, 2, 3, 4, 5, 6, 7, 8 }

B= { 2, 4, 6, 8 }

AB = { 1, 3, 5, 7 }
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Symmetric Difference

• The symmetric difference,
A  B = { x : (x  A and x  B) 

or (x  B and x  A)}

= (A - B) U (B - A)

A

U

B
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• The complement of a set A
with respect to a universal 
set U, denoted by A is 
defined to be

A = {x U| x  A}

A = UA

Complement

Example

Let U be a universal 
set,

U= { 1, 2, 3, 4, 5, 6, 7 }

A= { 2, 4, 6 }

A = U – A = { 1, 3, 5, 7 }
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• Commutative laws

A  B=B  A A  B=B  A

• Associative laws

A  (B  C) = (A  B)  C A  (B  C) = (A  B)  C

• Distributive laws

A  (B  C) = (A  B)  (A  C)       A  (B  C) = (A  B)  (A  C)

• Absorption laws

A  (A  B) = A            A  (A  B) = A

• Idempotent laws

A  A=A A  A=A

Properties of Sets

27



• Complement laws

(A) = A A  A =  A  A = U  =U U = 

• De Morgan’s laws

(A  B) = A  B (A  B) = A  B

• Properties of universal set

A  U = U A  U = A

• Properties of empty set

A  = A A  = 

Properties of Sets
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• Let A, B and C denote the subsets of a set S and let 
C  denote a complement of C in S.

• If A  C=B  C and A  C  = B  C , then prove 
that A=B

Example

Solution
A =  A  S

=  A  (C  C)

= (A  C)  (A  C) Distributive laws
=  (B  C)  (B  C) by the given conditions

= B  (C  C) Distributive laws
= B  S
=  B
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Example
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• Let A and B be sets, an ordered pair 
of elements aA dan bB written 
(a, b) is a listing of the elements a
and b in a specific order. 

• The ordered pair (a, b) specifies that 
a is the first element and b is the 
second element. An ordered pair (a, 
b) is considered distinct from 
ordered pair (b, a), unless a=b. , 
example  (1, 2)  (2, 1)

• The Cartesian product of two sets A
and B, written  AB is the set, AB = 
{(a,b)| aA, bB}. For any set A,  
A = A = . If A  B, then AB 
 BA. if |A| = m and |B| = n, then 
|AB|=mn.

Cartesian Product
Example
A= {a, b}, B={1, 2}. 

AB = {(a, 1), (a, 2), (b, 1), (b, 2)}

BA = {(1, a), (1, b), (2, a), (2, b)}

Example

A= {1, 3}, B={2, 4, 6}.

AB = {(1, 2), (1, 4), (1, 6),
(3, 2), (3, 4), (3, 6)}

BA = {(2, 1), (2, 3), (4, 1),
(4, 3), (6, 1), (6, 3)}

A  B, AB  BA

|A| = 2 , |B| = 3,

| AB |= 2.3= 6.
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• The Cartesian product of 
sets A1, A2, …., An is 
defined to be the set of 
all n-tuples  

(a1, a2,…an) where aiAi
for i=1,…,n;

• It is denoted A1  A2  …. 
 An

|A1  A2  ….  An |= |A1 
|.|A2 | …. |An |

Cartesian Product

Example

A= {a, b}, B={1, 2}, C={x, y}

ABC = {(a,1,x),(a,1,y), (a,2,x), 
(a,2,y), (b,1,x), (b,1,y), 
(b,2,x), (b,2,y)}

|ABC|= 2. 2. 2 = 8
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Some of the reasons:
• Logic is the foundation for computer operation
• Logical conditions are common in programs and 

programs can be proven correct.
• All manner of structures in computing have properties 

that need to be proven (and proofs that need to be 
understood), example Trees, Graphs, Recursive 
Algorithms, . . .

• Computational linguistics must represent and reason 
about human language, and language represents 
thought (and thus also logic).

40
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A statement or a proposition, is a declarative 
sentence that is either TRUE or  FALSE, but not 
both.
Example:

• 4 is less than 3.
• 7 is an even integer.
• Washington, DC, is the capital of 

United State.

PROPOSITION
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Example

i) Why do we study 
mathematics?

ii) Study logic.
iii) What is your name?
iv) Quiet, please.

Not propositions. Why ?

(i) &  (iii) : is question, not a 
statement.

(ii) & (iv) : is a command.

i) The temperature on the surface 
of the planet Venus is 800 F.

ii) The sun will come out 
tomorrow.

Propositions? Why?

• Is a statement since it is 
either true or false, but not 
both. 

• However, we do not know at 
this time to determine 
whether it is true or false. 
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Conjunctions are:
• Compound propositions formed in English with 
the word “and”,
• Formed in logic with the caret symbol 

(“ ∧ ”), and
• True only when both participating propositions 
are true.

CONJUNCTIONS
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TRUTH TABLE: This tables aid in the evaluation 
of compound propositions.

p q p∧q

T T T

T F F

F T F

F F F

CONJUNCTIONS (cont.)

True (T)
False (F) 
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p : 2 is an even integer
q : 3 is an odd number

p ∧ q

2 is an even integer and 3 is an odd number

Example

propositions

symbols

statements
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p ∧ q: today is Monday and it is hot

Example

p : today is Monday 
q : it is hot
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Proposition  
p : 2 divides 4
q : 2 divides 6

Symbol: Statement 
p ∧ q: 2 divides 4 and 
2 divides 6.
or, 
p ∧ q: 2 divides both 4 
and 6.

Example

Proposition
p : 5 is an integer
q : 5 is not an odd integer

Symbol: Statement
p ∧ q: 5 is an integer and 
5 is not an odd integer.
or, 
p ∧ q: 5 is an integer but 5 
is not an odd integer.
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DISJUNCTION

• Compound propositions formed in English 
with the word “or”,

• Formed in logic with the caret symbol (“ ∨ ”), 
and,

• True when one or both participating 
propositions are true.
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• Let p and q be propositions.

• The disjunction of p and q, written p ∨ q is

the statement formed by putting statements

p and q together using the word “or”.

• The symbol ∨ is called “or”

DISJUNCTION (cont.)
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p q p ∨q

T T T

T F T

F T T

F F F

The truth table for  p ∨ q:

DISJUNCTION (cont.)
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2 is an integer or 3 is greater than 5

1+1=3 or a decade is 10 years

i) p: 2 is an integer   ;  q: 3 is greater than 5

p ∨ q

ii) p : 1+1=3  ; q : A decade is 10 years

p ∨ q

Example
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3 is an even integer or 3 is an odd 
integer 

iii) p : 3 is an even integer ; q : 3 is an odd integer

p ∨ q 

3 is an even integer or an odd integer

Example

or
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NEGATION

Negating a proposition simply flips its 
value. Symbols representing negation 
include:

Let p be a proposition.
The negation of p, written ¬ p
is the statement obtained by negating
statement p.

￢x ,    , ∼x, x′  (NOT)x
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The truth table 
of ¬p:

p ¬p

T F

F T

NEGATION(cont.)

p : 2 is positive

¬ p

2 is not 
positive 
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Exercise 
Suppose x is a particular real number. Let p, q and r
symbolize “0 < x”, “x < 3” and “x = 3”, respectively. 
Write the following inequalities symbolically:

a) x ≤ 3

b) 0 < x <3

c) 0 < x ≤ 3

Solution:
a) q ∨r

b) p ∧ q

c) p ∧(q ∨r )
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CONDITIONAL PROPOSITIONS

Let p and q be propositions.

“if p, then q” 

is a statement called a conditional proposition, 
written as

p → q
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The truth table of p → q  
( Cause and effect relationship)

p q p q

T T T

T F F

F T T

F F T

FALSE if p
= True and 

q =false

TRUE if 
both 

true OR 
p=false 
for any  
value of 

q

CONDITIONAL PROPOSITIONS(cont.)
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If today is Sunday, then I will go for a 
walk.

If I get a bonus, then I will buy a new 
car

p : today is Sunday ; q : I will go for a walk

p → q : 

p : I get a bonus ; q : I will buy a new car
p → q:

Example
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if x/2 is an integer, then x is an even 
integer.

p : x/2 is an integer.
q : x is an even integer.

p → q : 

Example
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BICONDITIONAL

Let p and q be propositions.

“p if and only if q”

is a statement called a biconditional proposition, 
written as

p ↔ q
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The truth table of p ↔ q:

p q p ↔ q

T T T

T F F

F T F

F F T

BICONDITIONAL (cont.)
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Example

My program will 
compile if and only 
if it has no syntax 
error.

p : my program will 
compile
q : it has no syntax error.

p ↔ q :

x is divisible by 3 if 
and only if x is 
divisible by 9.

p : x is divisible by 3
q : x is divisible by 9

p ↔ q:

62



63

Neither ..nor..

p q ~p ∧ ~q

T T F

T F F

F T F

F F T

Neither p nor q [~p and ~ q] is a 
TRUE statement if neither p nor q is 
true.



Example

It is neither hot nor sunny, or
It is not hot and it is not sunny.

p : It is hot.
q : It is sunny.

~p ∧~ q :
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LOGICAL EQUIVALENCE

 The compound propositions Q and R are made 
up of the propositions p1, …, pn.

 Q and R are logically equivalent and write,
Q ≡ R

provided that given any truth values of p1, …, pn, 
either Q and R are both true or Q and R are 
both false.

65



Q = p → q R = ¬ q → ¬ p
Show that, Q ≡ R

The truth table shows that, Q ≡ R

p q p →q ¬q →¬p

T T T T

T F F F

F T T T

F F T T

Example
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Show that,    ¬ (p → q) ≡ p ∧ ¬ q

The truth table shows that,  ¬ (p → q) ≡ p ∧ ¬ q

p q ¬(p → q) p ∧¬q

T T F F

T F T T

F T F F

F F F F

Example
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PRECEDENCE OF LOGICAL CONNECTIVES

Precedence of logical connectives 
is as follows:

¬ Highest

∧

∨

→ 

↔ Lowest

not

and

or

If…then

If and only if 
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Construct the truth table for,
A = ¬(p ∨ q) → (q ∧ p)

Example

Solution:

p q (p∨q) ¬(p∨q) (q∧p) A

T T T F T T

T F T F F T

F T T F F T

F F F T F F
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LOGIC & SET THEORY

Logic and set theory go very well 
togather. The previous definitions can be 
made very succinct:

70



Venn Diagrams are used to depict the various 
unions, subsets, complements, intersections 
etc. of sets. 

Venn Diagrams
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Theorem for Logic

Let p, q and r be propositions.

Idempotent laws:
p ∧ p ≡ p
p ∨ p ≡ p

Truth table:

p p ∧ p p ∨ p 

T T T

F F F
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¬ ¬ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

Theorem for Logic (cont.)

Double negation law:

Commutative laws:
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(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∨ (q ∧ r) ≡ (p∨q) ∧ (p∨r)
p ∧ (q ∨ r) ≡ (p∧q) ∨ (p∧r)

PROVE

Associative laws:

Distributive laws:

Theorem for Logic (cont.)
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Prove:  Distributive Laws
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p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

PROVE

Absorption laws:

Theorem for Logic (cont.)
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Prove:  Absorption Laws
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¬(p ∧ q) ≡ (¬ p) ∨ (¬ q)
¬(p ∨ q) ≡ (¬ p) ∧ (¬ q)

De Morgan’s laws:

The truth table for ¬(p ∨ q) ≡ (¬ p) ∧ (¬ q)

Theorem for Logic (cont.)
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Propositional functions p, q and r are defined as follows:
p is "n = 7" 
q is "a > 5" 
r is "x = 0" 

Write the following expressions in terms of p, q and r, and show 
that each pair of expressions is logically equivalent. State 
carefully which of the above laws are used at each stage.

(a) ((n = 7) or (a > 5)) and (x = 0) 
((n = 7) and (x = 0)) or ((a > 5) and (x = 0))

(b) ¬((n = 7) and (a ≤ 5)) 
(n ≠ 7) or (a > 5) 

(c) (n = 7) or (¬((a ≤ 5) and (x = 0))) 
((n = 7) or (a > 5)) or (x ≠ 0) 

Exercise
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Solution (a)

((n = 7) or (a > 5)) and (x = 0) => (p ∨ q) ∧ r

((n = 7) and (x = 0)) or ((a > 5) and (x = 0)) => (p ∧ r) ∨ (q ∧ r)

(p ∨ q) ∧ r ≡ r ∧(p ∨ q) ....Commutative Law

≡ (r∧ p) ∨ (r ∧ q) ....Distributive Law

p is "n = 7" 
q is "a > 5" 
r is "x = 0" 
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¬((n = 7) and (a ≤ 5)) => ¬(p ∧ ¬q)
(n ≠ 7) or (a > 5) => ¬p ∨q

¬(p ∧ ¬q) ≡ (¬p) ∨ (¬(¬q)) ….De Morgan's Law

≡ ¬p ∨ q                ….Involution Law (Double negation)

p is "n = 7" 
q is "a > 5" 
r is "x = 0" 

Solution (b)
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(n = 7) or (¬((a ≤ 5) and (x = 0)))  => p ∨ (¬(¬q ∧ r))

((n = 7) or (a > 5)) or (x ≠ 0) => (p ∨ q) ∨ ¬r

p ∨ (¬(¬q ∧ r)) ≡ p ∨ (¬(¬q)∨(¬ r)) ...De Morgan's Law

≡ p ∨ (q ∨¬r)           … Involution Law

≡ (p∨ q) ∨¬r … Associative Law

p is "n = 7" 
q is "a > 5" 
r is "x = 0" 

Solution (c)



Exercise

Propositions p, q, r and s are defined as follows: 
p is "I shall finish my Coursework Assignment" 
q is "I shall work for forty hours this week" 
r is "I shall pass Maths" 
s is "I like Maths" 

Write each sentence in symbols: 
(a) I shall not finish my Coursework Assignment. 
(b) I don’t like Maths, but I shall finish my Coursework Assignment. 
(c) If I finish my Coursework Assignment, I shall pass Maths. 
(d) I shall pass Maths only if I work for forty hours this week and finish my 
Coursework Assignment. 

Write each expression as a sensible (if untrue!) English sentence: 
(e) q ∨ p 
(f) ¬p →¬r 
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(a) ¬p 
(b) ¬s ∧ p 

(c) p  r 
(d) r ↔ (q ∧ p) 

(e) I shall work for forty hours this week, or I’ll 
finish my Coursework Assignment. 
(f) If I shall not finish my Coursework 
Assignment, then I shouldn’t pass Maths. 

Solution
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Exercise 

For each pair of expressions, construct truth 
tables to see if the two compound propositions 
are logically equivalent: 

(a) p ∨ (q ∧¬p) 
p ∨ q 

(b) (¬p ∧ q) ∨ (p ∧ ¬q) 
(¬p ∧ ¬q) ∨ (p ∧ q) 
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(a) Yes; both results columns give 
T, T, T, F 

(b) No; first is 
F, T, T, F

second is 
T, F, F, T 

Solution
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• Most of the statements in mathematics and 
computer science are not described properly 
by the propositions. 

• Since most of the statements in mathematics 
and computer science use variables, the 
system of logic must be extended to include 
statements with the variables.

QUANTIFIERS
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• Let P(x) is a statement with variable x and A is 
a set. 

• P is a propositional function or also known as 
predicate if for each x in A, P(x) is a 
proposition. 

• Set A is the domain of discourse of P.

• Domain of discourse -> the particular domain 
of the variable in a propositional function.

QUANTIFIERS (cont.)
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• A predicate is a statement that contains 
variables.

• Example:

P (x) : x > 3

Q (x,y) : x = y + 3

R (x,y,z) : x + y = z

QUANTIFIERS (cont.)
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• x2 + 4x is an odd integer 

(domain of discourse is set of positive numbers).

• x2 – x – 6 = 0 

(domain of discourse is set of real numbers).

• UTM is rated as Research University in Malaysia

(domain of discourse is set of research university 
in Malaysia).

Example
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• A predicate becomes a proposition if the 
variable(s) contained is(are)

 Assigned specific value(s)

 Quantified

Example
• P(x) : x > 3. 

What are the truth values of P(4) and P(2)?

• Q(x,y) : x = y + 3. 

What are the truth values of Q(1,2) and Q(3,0)?

QUANTIFIERS (cont.)
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• Two types of quantifiers:

 Universal

 Existential

QUANTIFIERS (cont.)
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• Let A be a propositional function with domain 
of discourse B. The statement

for every x, A(x)

is universally quantified statement

• Symbol ∀ called a universal quantifier is used 
“for every”. 

• Can be read as “for all”, “for any”. 

QUANTIFIERS (cont.)
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• The statement can be written as

∀x A(x)
• Above statement is true if A(x) is true for 

every x in B (false if A(x) is false for at least 
one x in B ). 

• A value x in the domain of discourse that 
makes the statement A(x) false is called a 
counterexample to the statement.

QUANTIFIERS (cont.)
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• Let the universally quantified statement is

∀x (x2 ≥ 0)

• Domain of discourse is the set of real numbers. 

• This statement is true because for every real 
number x, it is true that the square of x is 
positive or zero.

Example
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• Let the universally quantified statement is

∀x (x2 ≤ 9)

• Domain of discourse is a set B = {1, 2, 3, 4}

• When x = 4, the statement produce false 
value. 

• Thus, the above statement is false and the 
counterexample is 4.

Example
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• Easy to prove a universally quantified statement is 
true or false if the domain of discourse is not too 
large. 

• What happen if the domain of discourse contains a 
large number of elements? 

• For example, a set of integer from 1 to 100, the set of 
positive integers, the set of real numbers or a set of 
students in Faculty of Computing. It will be hard to 
show that every element in the set is true.

Use existential quantifier!!

QUANTIFIERS (cont.)
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• Let A be a propositional function with domain 
of discourse B. The statement

There exist x, A(x)

is existentially quantified statement

• Symbol ∃ called an existential quantifier is 
used “there exist”. 

• Can be read as “for some”, “for at least one”. 

QUANTIFIERS (cont.)
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• The statement can be written as

∃x A(x)
• Above statement is true if A(x) is true for at 

least one x in B (false if every x in B makes the 
statement A(x) false).

• Just find one x that makes A(x) true!

QUANTIFIERS (cont.)
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• Let the existentially quantified statement is

∃x

• Domain of discourse is the set of real numbers. 

• Statement is true because it is possible to find at least one real 
number x to make the proposition true. 

• For example, if x = 2, we obtain the true proposition as below

Example
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• Distributing a negation operator across a 
quantifier changes a universal to an existential 
and vice versa.

¬ (x P(x)) ;  x ¬ P(x) 

¬ (x P(x)) ;  x ¬ P(x)

Negation of Quantifiers
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• Let P(x) = x is taking Discrete Structure course 
with the domain of discourse is the set of all 
students.

 ∀x P(x): All students are taking Discrete Structure 
course.

 ∃x P(x): There is some students who are taking 
Discrete Structure course.

Example
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¬∃x P(x):  None of the students are taking Discrete Structure 
course.

∀x ¬ P(x):  All students are not taking Discrete Structure 
course.

¬ (x P(x)) ;  x ¬ P(x)

¬ (x P(x)) ;  x ¬ P(x) 

¬∀x P(x):  Not all students are taking Discrete Structure 
course.
∃x ¬P(x):  There is some students who are not taking 
Discrete Structure course
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Proofs of Mathematical 
Statements

• A proof is a valid argument that establishes the 
truth of a statement.

• In math, CS,  and other disciplines, informal 
proofs  which are generally shorter, are generally 
used.

• Proofs have many practical applications:
– verification that computer programs are correct 
– establishing that operating systems are secure 
– enabling programs to make inferences in artificial 

intelligence 
– showing that system specifications are consistent
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Forms of  Theorems 

• Often the universal quantifier (needed for a 
precise statement of a theorem) is omitted by 
standard mathematical convention. 

For example, the statement:

“If x > y, where x and y are positive real numbers, then x2 > y2 ”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2 .”
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Proving Theorems

• Many theorems have the form:  

• To prove them, we show that where c is an arbitrary 
element of the domain, 

• By universal generalization the truth of the original 
formula follows.

• So, we must prove something of the form:  
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Even and Odd Integers

 Definition:  The integer n is even if there 
exists an integer k such that n = 2k, and n is 
odd if there exists an integer k, such that n = 
2k + 1. Note that every integer is either even 
or odd and no integer is both even and odd.

 We will need this basic fact about the integers 
in some of the example proofs to follow.
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Proving Conditional Statements: p → q

Direct Proof: Assume that  p is true. Use rules of inference, 
axioms, and logical equivalences to show that   q must also be 
true.
Example: Give a direct proof of the theorem “If n is an odd 

integer, then n2 is odd.”
Solution: Assume that n is odd. Then n = 2k + 1 for an integer 

k. Squaring both sides of the equation, we get:
n2 = (2k + 1)2  = 4k2 + 4k +1 = 2(2k2 + 2k) + 1= 2r + 1,
where r = 2k2 + 2k , an integer.                                  
We have proved that if n is an odd integer, then n2 is an odd 
integer.    
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Proving Conditional Statements: p → q

Indirect Proof : Assume ¬q and show ¬p is true also. If we give 
a direct proof of ¬q → ¬p then we have a proof of p → q.

Example: Prove that for an integer n, if n2 is odd, then n is odd. 

Solution:  Use proof by contraposition. Assume n is even (i.e., 
not odd).  Therefore, there exists an integer k such that n = 2k. 
Hence,

n2 =  4k2 = 2 (2k2) 

and n2 is even(i.e., not odd).

We have shown that if n is an even integer, then n2 is even. 
Therefore by indirect proof, for an integer n, if n2 is odd, then 
n is odd. 
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Proving Conditional Statements: p → q

• Example: Use a proof by contradiction to give a proof that  √2 is 
irrational.

Solution: Suppose √2 is rational. Then there exists integers a and b with 
√2  = a/b, where b≠ 0 and a and b have no common factors.             
Then

Therefore a2 must be even. If a2 is even then a must be even (an 
exercise). Since a is even, a = 2c  for some integer c. Thus,

Therefore b2 is even.  Again then b must be even as well.
But then 2 must divide both a and b. This contradicts our assumption 
that a and b have no common factors. We have proved by contradiction  
that our initial assumption must be false  and  therefore  √2 is  
irrational . 
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