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©UTM Sets

* The concept of set is Example
basic to all of
mathematics and
mathematical
applications.

e Aisaset of all positive
integers less than 10,

A={1I 2] 3I 4) 5) 6) 7) 8’ 9}

* Bisasetoffirst 5 positive
odd integers,

e Asetisawell-defined
collection of distinct

objects. B={1,3,5,7, 9}
* These objects are * (Cisaset of vowels,
called members or C={a, e, i, o, u}

elements of the set.
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Sets
7

e Asetisdetermined by its * Example, A={1, 2,3, 4},
elements and not by any A mifc%'_"'tJUSt as well be
particular order in which specified as
the element might be listed. {2,3,4,1}ori4, 1,3, 2}

* Theelements makingupa .« Example,
set are assumed to be {a, b, c a ct =—>{a b, c}

distinct, we may have {1,3,3,5,1) > {1 3,5}
duplicates in our list, only

one occurrence of each
element is in the set.
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uuuuuuuuuuuuuuuuuuuuuuuuu S l

 Use uppercase letters Example
A, B, C ... to denote e X={a,b,c d e}
sets, lowercase denote beX and meX

the elements of set. e A={{1} {2} 3,4},

{2}€A and 1¢A
* The symbol € stands

for ‘belongs to’ Set Notation
A={xIProperty of x}
* The symbol ¢ stands p— ¥ ™\ Property the element

must satisty to be In A

ThIS tells us that A consists of all
elements X that satisty "Propery of X".

for ‘does not belong to’
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uuuuuuuuuuuuuuuuuuuuuuuuuu SEtS

 Ifasetisalargefiniteset Example
or an infinite set, we can

describe it by listing a e A={1,2,3,4,5,6)

property necessary for A={X | X €Z 0< X <7}

memberships if Zdenotes the set of
Integers.

* Let S be a set, the notation,
A={x | xeS, P(X)}or A={x * B={1,2,3,4,..}
eS| P(X)} means that A is B={x | xez, x>0},
the set of all elements X of

S such that X satisfies the
property P.
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Set notation

N = the set of all natural numbers = {0,1,2,3,...}.
Z = theset of all integers = {0,-1,1,-2,2,...}.
Z" = the set of all positive integers.

Z~ = the set of all negative integers.

R. = the set of all real numbers.

Rt = the set of all positive real numbers.

R~ = the set of all negative real numbers.

R? = the set of all points in the plane.

Q = the set of all rational numbers.

Q" = the set of all positive rational numbers.

Q™ = the set of all negative rational numbers.

)/’ = the empty set = the set containing no elements.
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Set notation

"v" stands for "for every”
"J" stands for "umon"

—" stands for "is a subset of"
"&" stands for "is a not a (proper) subset of"
"e" stands for "is an element of"
"x" stands for "cartesian cross product”
"3" stands for "there exasts”
"(1" stands for "mtersection”

<" stands for "is a (proper) subset of”
"@" stands for the "empty set”
"¢" stands for "is not an element of”

" stands for "is equal to”
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” Subset

* |If every element of Ais an Example
element of B, we say that A={1, 2, 3}
A is a subset of B and
write A c B.

Subset of A,
_ D, {1}, {2}, {3},
A5 (1, 2}, {1, 3}
|ngBanngA {2’ 3}{1’ 2’ 3}
e The empty set (&) is a Note:

subset of every set. Ais a subset of A




If A is a subset of B
and A does not
equal B, we say
that A is a proper
subset of B (A B
and AzB (B ¢ A))

A proper subset of
a set Ais a subset
of A that is not
equalto A ({1,2,3}
Z A)

Example

e A={1, 2, 3}

Proper subset of A,

D, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

e B={1,2,3,4,5,6},A={1, 2, 3}.
Thus, A is proper subset of B.

* A={a,b,c,d,efg,h}, B={b,d,e}
C={a,b,c,d,e}, D={rs,d,e}
Thus, B and C are proper subset of A
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http://mathinsight.org/definition/subset

Empty set

The empty set &7 or {} but not {75!
is the set without elements.

Empty set has no elements
Empty set i1s a subset of any set
There is exactly one empty set
FProperties of empty set:
A=A A=

A AT=0 A A =11

U =3, 5" = U

¥ &% & ®

Example
@ = {x | x is a real number and x* =-3}

= {x | xis positive integer and x> < 0}

A
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ﬁ__// Equal set

The sets A and B are equal (A=B) if and

only if each element of A is an element of
B and vice versa.

Formally: A=B means VX [xeA < xeB].

Example
A={a, b, c},
B={b, c, a}, A=B

C={1) 2) 3) 4} )
D={x | x is a positive integer and 2x < 10}, C=D
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Equivalent set

Two sets, A and B, are equivalent if
there exists a one-to-one

correspondence between them.

When we say sets “have the same
size”, we mean that they are

equivalent.
Example

A: {A, B, C, D, E}
B: {1, 2, 3, 4, 5}, A and B is equivalent.

* Note : An equivalent set is simply a set with an equal number
of elements. The sets do not have to have the same exact
elements, just the same number of elements.
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Finite sets

A set A is finite

if it is empty
or

if there is a natural number n
such that set A is equivalent to

{1,2,3,...n}.

Example
A={1,2, 3, 4}
B={x| Xisaninteger, 1 <x<4}

Note : There exists a nonnegative integer n such that A has n
elements (A is called a finite set with n elements)
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Infinite sets

A set A is infinite

if there is NOT a natural number n such that
set A is equivalentto {1, 2, 3, ... n}.

Infinite sets are uncountable.
Are all infinite sets equivalent?

A set is infinite if it is equivalent to a proper
subset of itself!

Example
e« C=1{5,6,7,8,9, 10} (finite set)
e B={x| xisaninteger, 10 < x < 20} (finite set)

« D={x| xisaninteger, x >0} (infinite set)

4
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@UTM/ Universal set

Typically we consider a set A
a part of a universal set U4,

which consists of all possible elements.

Example
e The sets A={1,2,3}, B={2,4,6,8} and C={5,7}
e Universal set, U={1,2,3,4,5,6,7,8}
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” Cardinality of Set

 Let S be afinite set with n distinct elements,
where n>0.

 Then we write |S|=n and say that the
cardinality (or the number of elements) of S
IS n.

 Example
A={1, 2,3}, |A|=3
B={a,b,c,d,efg}, |B|=7




IIIIIIIIIIIIIIIIIIIIIIIII

P Power Set

 The set of all subsets of a set A, denoted P(A), is
called the power set of A., P(A)={X | X< A}

 |If |[A|=n, then |P(A)| = 2"

Example
e A={1,2,3}
e The power set of A,

P(A)={J, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }
Notice that |A| =3, and |P(A)| =23=8




Summary

How to Think of Sets

The elements of a set do not have an ordering,
hence {a,b,c} = {b,c,a}

The elements of a set do not have multitudes,
hence {a,a,a} = {a,a} = {a}

All that matters is: “Is x an element of A or not?”
The size of A is thus the number of different elements

Yes, XxeA
X EU ey
No, xzA
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7” Union

 The union of two sets A and B, denoted by
A U B, is defined to be the set

AUB={X|XeAorXx e B}

* The union consists of all elements belonging
to either A or B (or both)




Union

Venn diagram of A U B

U

If A and B are finite sets, the
cardinality of A U B,

| AUB| =|A| +|B| - |An B

Example

A={1, 2, 3, 4,5}, B={2, 4, 6} and C={8, 9}
AuUB={1,2,3,4,5,6}
AuC={12,3,4,5,8,9}
BuC=1{2,4,6,8,9}
AUuBUC={1,2,3,4,5,6, 8, 9}

www.utm.my
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......................... Intersection

* Venndiagramof AN B ¢ Theintersection of two sets A
and B, denoted by A "N B, is

v defined to be the set
ANB={X]|XeAandX e B}
 The intersection consists of all
elements belonging to both A
and B.
Example

A={1, 2, 3,4,5,6}, B={2,4,6,8,10}and C={ 1, 2, 8, 10 }
AN B={2, 4,6}
ANC={1, 2}
CNnB={2,8, 10}
ANBNC={2}

innovative e entrepreneurial e global www.utm.my



©UTM Disjoint

» Venn diagram, AN B = e Two sets A and B
are said to be
u disjoint if,
@ .e ANB=O
Example

A={1,3,5,67,09, 11}
B=1{2,4,6,8, 10}
ANB=Y




* Venn diagram of A-B o

U

Q«

Example
A={1,2,3,4,56,7,8}
B={2,4,6,8}
A-B={1,3,5,7}

Difference

The set
A-B={X|XeA
and X ¢ B}

is called the
difference.

The difference A—
B consists of all
elements in A that
are not in B.




 The symmetric difference,
ADPB={x:(x € Aand x ¢ B)
or (x e Band x ¢ A)}

=(A-B)U(B-A)




Complement

e The complement of aset A
with respect to a universal
set U, denoted by A’ is
defined to be

A'={Xx eU| x ¢ A}
A'=U-A

Example

Let U be a universal
set,

U={1)2)314)5)617}
A={2,4,6}
Al=U-A={1,3,57}




* Commutative laws

ANB=BNMA AUB=BUA
* Associative laws

AN(BNC)=(AnB)NC Au(BuUC)=(AuB)uUC
* Distributive laws

AUuBNC=(AuB)Nn(Aul) AnBuUQ=(ANnB)UANCQC
 Absorption laws

AUANB)=A AN(AUB)=A
 |dempotent laws

AN A=A AU A=A
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* Complement laws
(A)=A ANA =0 AUA=U O'=U U=0C
* De Morgan’s laws

(ANB) =A"U B (AUB)=A"NB
* Properties of universal set
AulU=U ANU=A

¢ Properties of empty set
A U @ = A AN @ - @

www.utm.my



......................... Example
7z i

e LetA, Band C denote the subsets of a set S and let
C ' denote a complement of Cin S.

e fANC=BNCandANC'=BnNC’, then prove
that A=B

Solution
A =ANS
=AnNn(Cul)
(ANC)U(AnNC) Distributive laws
=(BNnQu((BNC) by the given conditions

= BN (Cu () Distributive laws
=BNS
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Simplify the set
((AUB)NC)YUB')'=
= ((AuB)C)"B”

(AuB)NC)B
(AUB)N(CB)
= (AUB)N(BNC)
(ALB)B)NC
BNC

Example

DeMorgan]
Double Complement]

Associativity of ]

‘Commutativity of ]

Associativity of ]

Absorption]
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" G

eneralized union

Assume A,, A,, ... and A_ are sets

The union of A,, A,, ... and A_ is the set that
contains those elements that are members
of at least one set.

n
A,UA,U..UA =UA,

=1




©UTM /

”  Generalized union (example)

Assume A is {i, i+1, i+2, ...}. What is UA’?
=1

Solution:

A, ={123,...}
={2,3,4,...}
={3,4,5,...}

n
UA={123,..}
1=1
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Generalized intersection

Assume A,, A,, ... and A, are sets

The intersection of A,, A,, ... and A_ is the
set that contains those elements that are
members of all sets.

n
A,NA,N...NA =NA,
=1




IIIIIIIIIIIIIIIIIIIIIIIII

Generalized intersection (example)
n

Assume A is {i, i+1, i+2, ...}. Whatis M A?
=1

Solution:

A, ={123,..])

A,={234,.}

ﬁl:n ={n,n+1,n+2,...}
A ={nn+1,n+2,...}
i=1




IIIIIIIIIIIIIIIIIIIIIIIII

Generalized union and intersection

A, UA,U...UA_ U U A,

i=1 '

ANA,N...NA_

A




Example

o0 0

Assume A = {1,2,3,...,i}. Whatis U A and M A?
=1 1=1

Solution:
A, ={1}

A, ={1,2}
A; ={1,2,3}

©o
UA =2Z*

CO

=1 NA={1)
=1




©UTM Cartesian Product

IIIIIIIIIIIIIIIIIIIIIIIIII

Let A and B be sets, an ordered pair  Example
of elements aeA dan be B written A={a, b}, B={1, 2}.
(a, b) is a listing of the elements a AxB={(a, 1), (a,2), (b, 1), (b, 2)}
and b in a specific order. o T
, . BxA ={(1, a), (1, b), (2, a), (2, b)}
 The ordered pair (a, b) specifies that
a is the first element and b is the

second element. An ordered pair (g, EXample
b) is considered distinct from A=1{1, 3}, B={2, 4, 6}.
ordered pair (b, a), unless a=b., AxB ={(1, 2), (1, 4), (1, 6),
example (1, 2) #(2, 1) (3, 2), (3, 4), (3, 6)}

* The Cartesian product of twosets A BxA ={(2, 1), (2, 3), (4, 1),
and B, written AxB is the set, AxB = (4, 3), (6, 1), (6, 3)}
{(a,b)| a€A, beB}. For any set A, A # B, AxB # BxA

AxQD = OxA=D. If A+ B, then AxB |A| =2, |B| =3,
# BXA. if |A| =m and |B| = n, then | AxB |=2.3=6.
| AXB|=mn.
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e The Cartesian product of
sets A, A,, ..., A IS

defined to be the set of Example
all n-tuples A= {a, b}, B={1, 2}, C={x, y}
(a;, @,,...a,) where a;€A, AxBxC = {(a,1,x),(a,1,y), (a,2,X),
for i=1,...,n; (a,2,y), (b,1,x), (b,1,y),
(b,2,x), (b,2,y)}
* Itisdenoted A; x A, x .... |AxBxC|=2.2.2=8
XA,

|A; XA, x .. XA | = |A]
1Ay | oo |A,

www.utm.my
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@__UTM/ Why Are We Studying Logic?

Some of the reasons:

* Logic is the foundation for computer operation

* Logical conditions are common in programs and
programs can be proven correct.

* All manner of structures in computing have properties
that need to be proven (and proofs that need to be
understood), example Trees, Graphs, Recursive
Algorithms, . ..

 Computational linguistics must represent and reason
about human language, and language represents
thought (and thus also logic).
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......................... PROPOSITION

A statement or a proposition, is a declarative

sentence that is either TRUE or FALSE, but not
both.

Example:
* 4islessthan 3.
* 71isan even integer.

* Washington, DC, is the capital of
United State.
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uuuuuuuuuuuuuuuuuuuuuuuuuuu Example

i)  Why do we study i) The temperature on the surface
mathematics? of the planet Venus is 800 F.

i) Study logic. i) The sun will come out

iii) What is your name? tomorrow.

iv) Quiet, please.

Not propositions. Why ? Propositions? Why?

(i) & (iii) : is question, not a e |sastatementsinceitis
statement. either true or false, but not

(ii) & (iv) : is a command. both.

e However, we do not know at
this time to determine
whether it is true or false.

innovative e entrepreneurial e global www.utm.my




IIIIIIIIIIIIIIIIIIIIIIIII

— CONJUNCTIONS

Conjunctions are:
e Compound propositions formed in English with
the word “and”,
e Formed in logic with the caret symbol

(“A”), and
e True only when both participating propositions
are true.




CONJUNCTIONS ...

TRUTH TABLE: This tables aid in the evaluation
of compound propositions.

o\

T T T

T F F

F T F True (T)
False (F)

F F F




IIIIIIIIIIIIIIIIIIIIIIIII

— Example

p :21s an even integer }
. propositions
g : 3 is an odd number

p N\ q } symbols

2 is an even integer and 3 is an odd number | statements
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— Example

p : today is Monday
g :itis hot

p A g: today is Monday and it is hot




©UTM Example

Proposition Proposition

p : 2 divides 4 p :5is aninteger

q : 2 divides 6 g : 5is not an odd integer
Symbol: Statement Symbol: Statement

p A q: 2 divides 4 and p A @g:5isaninteger and
2 divides 6. 5is not an odd integer.
or, or,

p A q:2dividesboth4 pAqg:5isaninteger but5
and 6. is not an odd integer.




ey /
— DISJUNCTION

 Compound propositions formed in English
with the word “or”,

 Formed in logic with the caret symbol (“V”),
and,

* True when one or both participating
propositions are true.
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4 DISJUNCTION ...,

* Let p and g be propositions.
* The disjunction of p and q, written p V q is
the statement formed by putting statements

p and q together using the word “or”.

 The symbol V is called “or”




DISJUNCTION ..,

The truth table for p V g:

T
T
F
F

m — M -
m - - -




IIIIIIIIIIIIIIIIIIIIIIIIII

4 Example

i) p: 2is an integer ; q:3is greater than 5

pVvag 2 is an integer or 3 is greater than 5

i) p:1+1=3 ; g : A decade is 10 years

pV g 1+1=3 or adecade is 10 years




IIIIIIIIIIIIIIIIIIIIIIIIII

4 Example

iii) p: 3isan even integer; q : 3 is an odd integer

PV 3isanevenintegeror3isanodd
Integer

or

3 is an even integer or an odd integer
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7 NEGATION

Negating a proposition simply flips its
value. Symbols representing negation
include: —x, x, ~x, x' (NOT)

Let p be a proposition.

The negation of p, written - p

is the statement obtained by negating
statement p.




NEGATION..,

The truth table p : 2 is positive
of =p:
- P
_p_ ap
4 2 is not
T F positive

FooT




IIIIIIIIIIIIIIIIIIIIIIIIII

— Exercise

Suppose x is a particular real number. Let p, g and r

)/

symbolize “0 < x”, “x < 3” and “x = 37, respectively.
Write the following inequalities symbolically:

Solution:
a) x<3 a) g Vr
b)0<x<3 b) p A g




IIIIIIIIIIIIIIIIIIIIII

CONDITIONAL PROPOSITIONS
Let p and q be propositions.

“if p, then q”

is a statement called a conditional proposition,
written as




CONDITIONAL PROPOSITIONS....,

The truth table of p 2 q

( Cause and effect relationship) O

both
true OR
p=false
for any
value of

q

FALSE if p
= True and
q =false

-n—l'n—ll
L=
— 4 m < 4
o




IIIIIIIIIIIIIIIIIIIIIIIIII

p— Example

p : today is Sunday ; g : | will go for a walk

p =2 q: If today is Sunday, then | will go for a
walk.

p :1getabonus; qg: I will buy a new car

P = 4: |f| get a bonus, then | will buy a new
car
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4 Example

p : X/2 is an integer.
g : X IS an even integer.

P = q:if x/2 is an integer, then x is an even
integer.




BICONDITIONAL

Let p and q be propositions.

“p if and only if g”

is a statement called a biconditional proposition,

written as




BICONDITIONAL ...,

The truth table of p € ¢g:

P9 pod
T T T
T F F
F T F
F F T




IIIIIIIIIIIIIIIIIIIIIIIIII

7 Example

p : my program will p : x is divisible by 3
compile q : x is divisible by 9
g : it has no syntax error.

p<<q: p<q:

My program will X is divisible by 3 if
compile if and only and only if x is

if it has no syntax divisible by 9.
error.




Neither ..nor..

Neither pnor g[~p and ~ q] is a
TRUE statement if neither p nor gis
true.

T T
T F
F T
F F

— T M T
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P Example

p : Itis hot.
q : It is sunny.

~p A~ q : It is neither hot nor sunny, or
It is not hot and it is not sunny.
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4 LOGICAL EQUIVALENCE

" The compound propositions Q and R are made
up of the propositions p,, ..., p,.

" Q and R are logically equivalent and write,
Q=R

provided that given any truth values of p,, ..., p,,

either Q and R are both true or Q and R are

both false.




Example

Q=p—>q R=-q=>-p
Show that, Q=R

The truth table shows that, Q =R

_p g | pog -qgp
T T
T F F F
F T T T
F F T T




Example

Showthat, -(p>qg)=pA-g

The truth table shows that, - (p > g)=pA-g

RN ETIE]

T T
T F T T
F T F F
F F F F




PRECEDENCE OF LOGICAL CONNECTIVES

Precedence of logical connectives
is as follows:

not = A Highest
and A
or V
If...then >
If and only if o Lowest




Example

Construct the truth table for,

A=-(pVaq)->(qAp)

Solution:

EARIGARG

T T
T F
FooT
FF

m o+ - -

T

: T

n = - -
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7 LOGIC & SET THEORY

Logic and set theory go very well
togather. The previous definitions can be
made very succinct:

xz A If and only if —(xeA)
AcB if and only if (xe A — xeB) is True
x € (AnB) if and only if (xeA A xeB)
x € (AuB) If and only If (xeA v xeB)
X € A-B if and only if (xeA A x¢B)
X e AAB ifand only if (xeA A XgB) v (xeB A xgA)

X € A’if and only If +(xeA)
X € P(A) if and only if XcA

innovative e entrepreneurial e global

www.utm.my



Venn Diagrams

Venn Diagrams are used to depict the various
unions, subsets, complements, intersections
etc. of sets.

A
avA




e /
7 Logic and Sets

are closely related

Tautology Set Operation Identity
pvqgeqvp AuB=BJUA
pargeqgap A~B=BnA
pv{qu}-c—:r(pvq)vr Au(BuC)=(HuB)uC
pr(gar)yes(pag)ar An(BAC)=(AnB)nC
pv(gar)<(pvq)a(pvr) Au(BAC)=(AuB)n(AuC
pa(@vr)<(pagq)v(pnar) An(BuC)=(AnB)u(AnC)
pr—qg < par=(prq) -B=A-(AnB)

pr—gvr)es(par=g)a(pa-r)
pArAgar)e (pa—gq)v(pa—r)

r

-
-

pr(q@a=r)e(prg)a=(pa—r) An(B-C)=(AnB)-(AnC
pv(ga=r)e(pvg)a=(ra—p) Au(B-C)=(AuB)-(C-A)
pr—v(Ga=r)<>(pr—q)v(pAr) A-(B-C)=(A-B)u(AnC)

The above identities serve as the basis for an "algebra of sets".
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' Logic and Sets

are closely related

Set Operation Identity

Tautology
pApep A~A=A
pvpep AUA=A
pr~qr—q)ep A-T=A
pv—(gnr—=q)ep Avd=A
Contradiction Set Operation Identity
pr—p A-A=0
pPA(g~r—q) And=0
pr—p A-A=0

The above identities serve as the basis for an "algebra of sets".
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Theorem for Logic

Let p, g and r be propositions.

Idempotent laws:
PAPEP
PVPEP

Truth table:
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P Theorem for Logic (cont)

Double negation law:

~-p=p

Commutative laws:

PAG=qAp
pVGg=qVp




@UTM/ Theorem for Logic (cont)

Associative laws:

(PAQ)Ar=pA(qAT)
(pVag)Vr=pV(qVr)

Distributive laws:

pVi(gAr)=(pVvq) A (pVr) PROVE
pA(gVr)=(pAq)V (pAr) |




IIIIIIIIIIIIIIIIIIIIIIIII

Prove: Distributive Laws

plg |rlpvigar pvglalpwvr
TIT [T T T
TIT |F| T T
TIF [T T T
TIF [F| T T
FIT [T T T
FIT [F| F F
FIF [T F F
FIF | F| F F
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@UTM/ Theorem for Logic (cont)

Absorption laws:

pA(pVaq)=p

pVIipAQ)=p . ©




Prove: Absorption Laws

plag |palpvag) pvipAag)
T[T T T
T|F T T
FIT F F
FIF F F
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@UTM/ Theorem for Logic (cont)

—

De Morgan’s laws:

-(pAqg)=(-p)V(-q)
-(pVq)=(-p)A(-q)

The truth table for-(p V g) = (- p) A (- q)

J

—

C;I'] DA

TN Tm — —

q
1
3
:
F

— M M




o
uuuuuuuuuuuuuuuuuuuuuuuuuu I xerc'se

Propositional functions p, g and r are defined as follows:

p is ||n — 7||
q is ||a S 5||
ris"x=0"

Write the following expressions in terms of p, g and r, and show
that each pair of expressions is logically equivalent. State
carefully which of the above laws are used at each stage.

(a) ((n=7)or(a>5))and (x=0)
((n=7)and (x=0)) or ((a>5)and (x=0))
(b) =((n=7)and (a<5))
(n#7)or (a>5)
(c) (n=7)or(-((a<5)and (x=0)))
((n=7)or(a>5)) or(x#0)
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Solution (a)

p is Iln - 7||
q is Ila > 5||
ris"x=0"

(n=7)or(a>5))and (x=0) =>(pV q) A r

(n=7)and (x=0))or((a>5)and (x=0))=>(p A r)V (g A r)

(bvag)Ar=r AlpVq) ....Commutative Law
=(rA p) V (r A q) ....Distributive Law




SOIUtion (b) pis"n=7"

q is Ila > 5II
ris "x=0"

~((n=7)and (a <5)) =>-(p A -q)
(h#7)or (a>5)=>-p Vg

=(p A =q) =(-p) V (-(-q)) ....0eMorgan's Law

=-p V q ....Involution Law (Double negation)




Solution (c) T
qgis"a>5"
ris"x=0"

(n=7)or(-(la<5)and (x=0))) => pV (=(-qg A 1))

(h=7)or(a>5))or (xz0)=>(pV q)V -r

pV(-(-gAr)=pV (—'(—'Q)\/(—- r)) ...De Morgan's Law
=p V(g V-r) ... Involution Law
=(pV q) V-r ... Associative Law




IIIIIIIIIIIIIIIIIIIIIIIIII

Exercise
7

Propositions p, g, r and s are defined as follows:
pis "l shall finish my Coursework Assignment"
g is "I shall work for forty hours this week"

ris "l shall pass Maths"

sis "l like Maths"

Write each sentence in symbols:

(a) I shall not finish my Coursework Assignment.

(b) I don’t like Maths, but | shall finish my Coursework Assignment.
(c) If | finish my Coursework Assignment, | shall pass Maths.

(d) I shall pass Maths only if | work for forty hours this week and finish my
Coursework Assignment.

Write each expression as a sensible (if untrue!) English sentence:
(e)g Vp
(f) ~p =>-r
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[ J
uuuuuuuuuuuuuuuuuuuuuuuuuu SOIutlon

(c)p 2r

(d) r <> (g A p)

(e) | shall work for forty hours this week, or Il
finish my Coursework Assignment.

(f) If | shall not finish my Coursework
Assignment, then | shouldn’t pass Maths.




IIIIIIIIIIIIIIIIIIIIIIIII

— Exercise

For each pair of expressions, construct truth
tables to see if the two compound propositions
are logically equivalent:

(@) p V(g A-p)
pVaq

(b) (=pAqg)V(pA-q)
(-p AN -q)V (pAaq)




[ J
||||||||||||||||||||||||| SOIutlon

(a) Yes; both results columns give
I, TTF
(b) No; first is
FT, 7T, F
second is

LERT
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7 QUANTIFIERS

* Most of the statements in mathematics and
computer science are not described properly
by the propositions.

e Since most of the statements in mathematics
and computer science use variables, the
system of logic must be extended to include
statements with the variables.
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7 QUANTIFIERS ...

* Let P(X) is a statement with variable X and A is
a set.

* Pis a propositional function or also known as
predicate if for each Xin A, P(X) is a
proposition.

* Set Ais the domain of discourse of P.

 Domain of discourse -> the particular domain
of the variable in a propositional function.
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4 QUANTIFIERS ...

* A predicate is a statement that contains
variables.

 Example:
P(x):x>3
Q(xy):x=y+3
R(xyz):x+y=z




IIIIIIIIIIIIIIIIIIIIIIIIII

4 *‘ Example

* X2+ 4X is an odd integer

(domain of discourse is set of positive numbers).
* X°—X—-6=0

(domain of discourse is set of real numbers).
* UTM is rated as Research University in Malaysia

(domain of discourse is set of research university
in Malaysia).
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7 QUANTIFIERS ...

* A predicate becomes a proposition if the
variable(s) contained is(are)

= Assigned specific value(s)
" Quantified
Example
* P(x):x>3.
What are the truth values of P(4) and P(2)?
* Qxy):ix=y+3.
What are the truth values of Q(1,2) and Q(3,0)?
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4 QUANTIFIERS ...,

* Two types of quantifiers:
= Universal

= Existential
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7 QUANTIFIERS ...

* Let A be a propositional function with domain
of discourse B. The statement

for every X, A(X)
is universally quantified statement

* Symbol V called a universal quantifier is used
“for every”.

* Can be read as “for all”, “for any”.
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7 QUANTIFIERS ...

* The statement can be written as
VX A(X)

* Above statement is true if A(X) is true for
every X in B (false if A(X) is false for at least
one X in B).

* Avalue X in the domain of discourse that
makes the statement A(X) false is called a
counterexample to the statement.




IIIIIIIIIIIIIIIIIIIIIIIII

4 Example

* Let the universally quantified statement is
VX (x2 2 0)
e Domain of discourse is the set of real numbers.

* This statement is true because for every real
number X, it is true that the square of X is
positive or zero.




IIIIIIIIIIIIIIIIIIIIIIIII

~ Example

* Let the universally quantified statement is
VX (X? £ 9)
* Domain of discourse isaset B={1, 2, 3, 4}

* When X =4, the statement produce false
value.

 Thus, the above statement is false and the
counterexample is 4.
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— QUANTIFIERS ....

e Easy to prove a universally quantified statement is
true or false if the domain of discourse is not too
large.

 What happen if the domain of discourse contains a
large number of elements?

* For example, a set of integer from 1 to 100, the set of
positive integers, the set of real numbers or a set of
students in Faculty of Computing. It will be hard to
show that every element in the set is true.

Use existential quantifier!!
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4 QUANTIFIERS ...

* Let A be a propositional function with domain
of discourse B. The statement

There exist X, A(X)
is existentially quantified statement

* Symbol 3 called an existential quantifier is
used “there exist”.

 Can be read as “for some”, “for at least one”.
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— QUANTIFIERS ...

* The statement can be written as
X A(X)

* Above statement is true if A(X) is true for at
least one X in B (false if every X in B makes the
statement A(X) false).

* Just find one X that makes A(Xx) true!




IIIIIIIIIIIIIIIIIIIIIIIIII

" Example

* Let the existentially quantified statement is
ax(_X _2
x*+1 5

e Domain of discourse is the set of real numbers.

e Statement is true because it is possible to find at least one real
number X to make the proposition true.

* For example, if X = 2, we obtain the true proposition as below

X _2)_(_2 _?2
Xx*+1 5 2°+1 5
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#~  Negation of Quantifiers

* Distributing a negation operator across a
guantifier changes a universal to an existential
and vice versa.

- (VX P(X)) ; X = P(X)

- (AX P(X)) ; VX = P(X)




uuuuuuuuuuuuuuuuuuuuuuuuuu Example

e Let P(X) = X is taking Discrete Structure course
with the domain of discourse is the set of all
students.

= VX P(X): All students are taking Discrete Structure
course.

= 3X P(X): There is some students who are taking
Discrete Structure course.
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- (X P(X)) ; VX = P(X)

-3x P(x): None of the students are taking Discrete Structure
course.

Vx - P(x): All students are not taking Discrete Structure
course.

- (VX P(X)) ; X - P(X)

-V¥x P(x): Not all students are taking Discrete Structure
course.

dx -P(x): There is some students who are not taking
Discrete Structure course
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.......................... Proofs of Mathematical

’ Statements

* A proof is a valid argument that establishes the
truth of a statement.

* |n math, CS, and other disciplines, informal
proofs which are generally shorter, are generally

used.

* Proofs have many practical applications:
— verification that computer programs are correct
— establishing that operating systems are secure

— enabling programs to make inferences in artificial
intelligence

— showing that system specifications are consistent
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7  Forms of Theorems

e Often the universal quantifier (needed for a
precise statement of a theorem) is omitted by
standard mathematical convention.

For example, the statement:
“If x>y, where x and y are positive real numbers, then x> > y?”
really means

“For all positive real numbers x and y, if x>y, then x? > y2 ”
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7~ Proving Theorems

* Many theorems have the form: vz (P(z) = Q(z))

* To prove them, we show that where c is an arbitrary
element of the domain, P(c) — Q(c)

* By universal generalization the truth of the original
formula follows.

* So, we must prove something of the form: p — ¢
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7~ Even and Odd Integers

= Definition: The integer nis even if there
exists an integer k such that n = 2k, and n is
odd if there exists an integer k, such that n =
2k + 1. Note that every integer is either even
or odd and no integer is both even and odd.

= We will need this basic fact about the integers
in some of the example proofs to follow.
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—

Proving Conditional Statements: p = g

Direct Proof: Assume that p is true. Use rules of inference,
axioms, and logical equivalences to show that g must also be
true.

Example: Give a direct proof of the theorem “If n is an odd
integer, then n? is odd.”

Solution: Assume that n is odd. Then n = 2k + 1 for an integer
k. Squaring both sides of the equation, we get:

n? =(2k+1)2 =4k2+ 4k+1=2(2k2 + 2K) + 1= 2r+ 1,
where r= 2k*+ 2k, an integer.

We have proved that if n is an odd integer, then n? is an odd
integer.
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7 Proving Conditional Statements: p — q

Indirect Proof : Assume —g and show —p is true also. If we give
a direct proof of =g = —pthen we have a proof of p — q.

Example: Prove that for an integer n, if n? is odd, then n is odd.

Solution: Use proof by contraposition. Assume n is even (i.e.,
not odd). Therefore, there exists an integer k such that n = 2k.
Hence,

n? = 4k?=2 (2k?)
and n4 is even(i.e., not odd).

We have shown that if n is an even integer, then n? is even.
Therefore by indirect proof, for an integer n, if n is odd, then
nis odd.
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@UTM Proving Conditional Statements: p - g

’ * Proof by Contradiction. To prove p,assume —p and derive a
contradiction such as p A —p. (an indirect form of proof). To prove

p, assume —p and derive a contradiction suchas p A —=p. (an
indirect form of proof). Since we have shown that —=p =>F is true, it
follows that the contrapositive T— palso holds.

 Example: Use a proof by contradiction to give a proof that V2 is
irrational.
Solution: Suppose V2 is rational. Then there exists integers a and » with
V2 =a/b, where b# 0and aand bhave no common factors.

Then )
— 2—2 2b2 — a2

Therefore a° must be even. If a° is even then a must be even (an
exercise). Since ais even, a =2c for some integer ¢ Thus,

Therefore 27 is even. Again then h must be even as well.

But then 2 must divide both aand b. This contradicts our assumption
that aand b have no common factors. We have proved by contradiction
that our initial assumption must be false and therefore V2 is
irrational .
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