

INSPIRING CREATIVE AND INNOVATIVE MINDS

www.utm.my

- A 3-Φ system is formed by 3*1-Φ systems, which are physically connected together for 3-Φ operation.
- To maintain constant power flow, the three single phase circuits must be operated with the same voltage and current magnitudes in each phase (circuit), with a relative phase angle of 120 electrical degrees apart.

www.utm.my

Advantages of 3- Φ compared to 1- Φ system

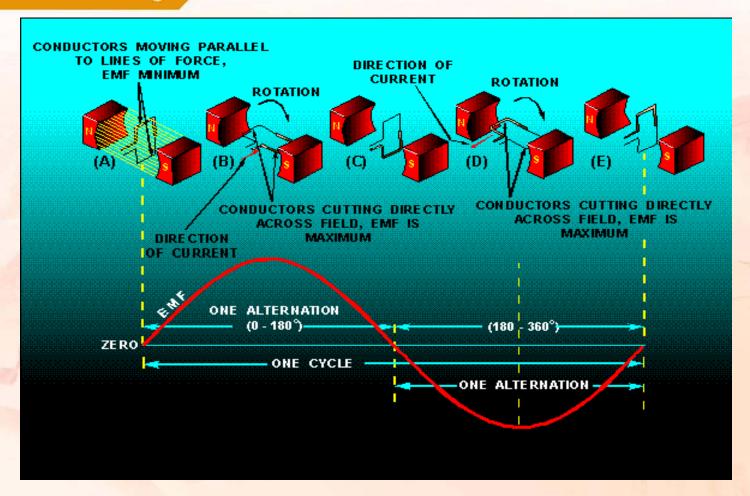
- High efficiency
- For same power transfer at the transmission line, less conductor and hence lighter in weight
- Construction and maintenance minimum and therefore cheaper
- Starting characteristic and operation of 3-Φ
 equipment better/more stable than 1- Φ

www.utm.my

Basic AC Generation Principle

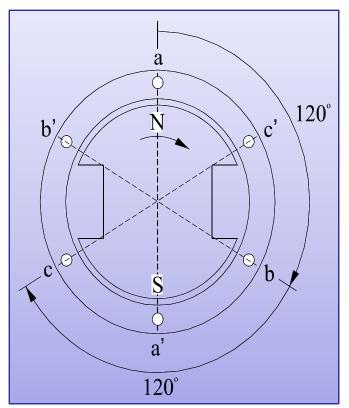
When a conductor is placed in a magnetic field, if one of them is moved, an electromotive force (emf) will be induced in the conductor. This effect is called electromagnetic induction.

www.utm.my

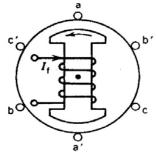


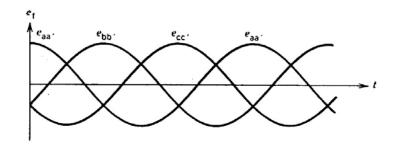
A simple three-phase two-pole generator

www.utm.my



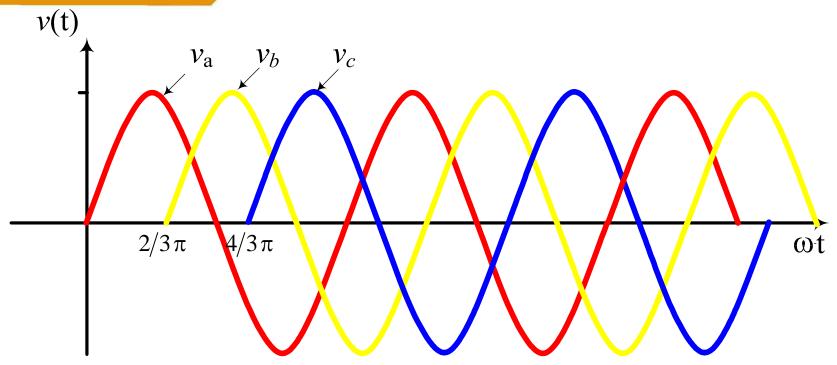
Three separate windings or coils with terminals a-a', b-b' and c-c' are physically placed 120° apart around the stator.





Emf Generated

www.utm.my



$$v_a = V_a \sin \omega t$$

$$v_b = V_b \sin{(\omega t - 120^\circ)}$$

$$v_c = V_c \sin(\omega t - 240^\circ) = V_c \sin(\omega t + 120^\circ)$$

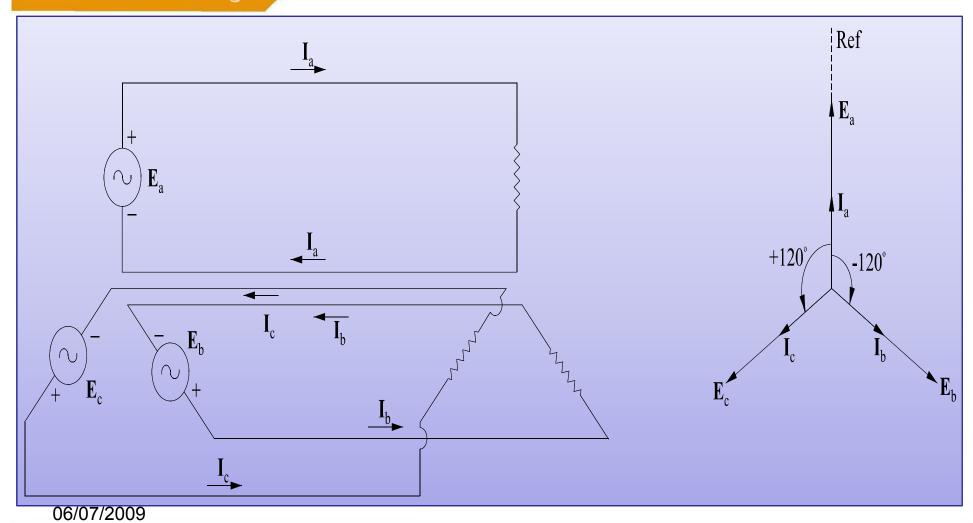
$$V_a = V \angle 0^\circ$$

$$V_b = V \angle -120^\circ$$

$$V_c = V \angle -240^\circ = V \angle 120^\circ$$

A three phase system and its vector diagrams

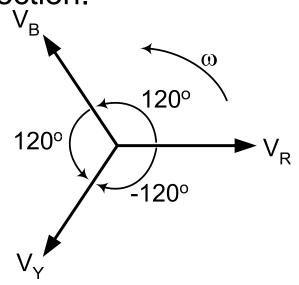
www.utm.my



Three Phase System-Phase Sequence

www.utm.my

- RYB or positive sequence, we describe the phase sequence as Red-Yellow-Blue
- V_R leads V_Y , which in turn leads V_B . This sequence is produced when the rotor rotates in the counterclockwise direction.

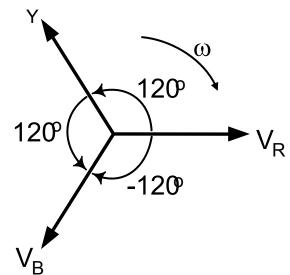


$$egin{aligned} \mathbf{V_R} &= \mathbf{V_{R(rms)}} \angle \mathbf{0^o} \ \mathbf{V_Y} &= \mathbf{V_{Y(rms)}} \angle -120^o \ \mathbf{V_B} &= \mathbf{V_{B(rms)}} \angle -240^o \ &= \mathbf{V_{B(rms)}} \angle 120^o \end{aligned}$$

Three Phase System-Phase Sequence

www.utm.my

- RBY or negative sequence, we describe the phase sequence as Red-Blue-Yellow
- V_R leads V_B, which in turn leads V_Y. This sequence is produced when the rotor rotates in the clockwise direction.



$$V_R = V_{R(rms)} \angle 0^{\circ}$$

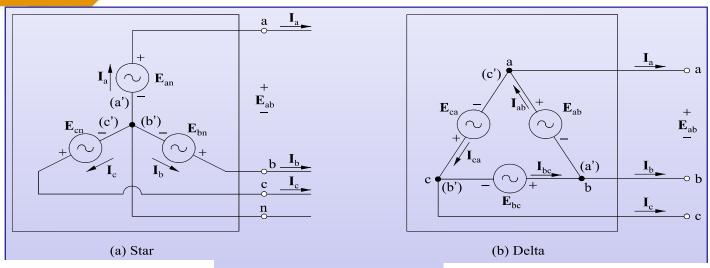
$$V_{_B} = V_{_{B(rms)}} \angle -120^{\circ}$$

$$\mathbf{V}_{Y} = V_{Y(rms)} \angle -240^{\circ}$$
$$= V_{Y(rms)} \angle 120^{\circ}$$

 Remember in this subject all phasor systems rotate counter clockwise

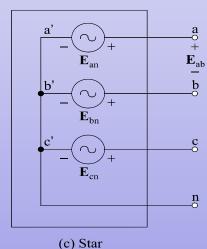
Three Phase System-Connections

www.utm.my



Star Connection (Y)

- Usually is being used in system that need high voltage and low current
- There are two type of Y connection, i.e:
- i) 3 wire star connection
- ii) 4 wire star connection (3 live conductors and one neutral)



Delta Connection (\triangle)

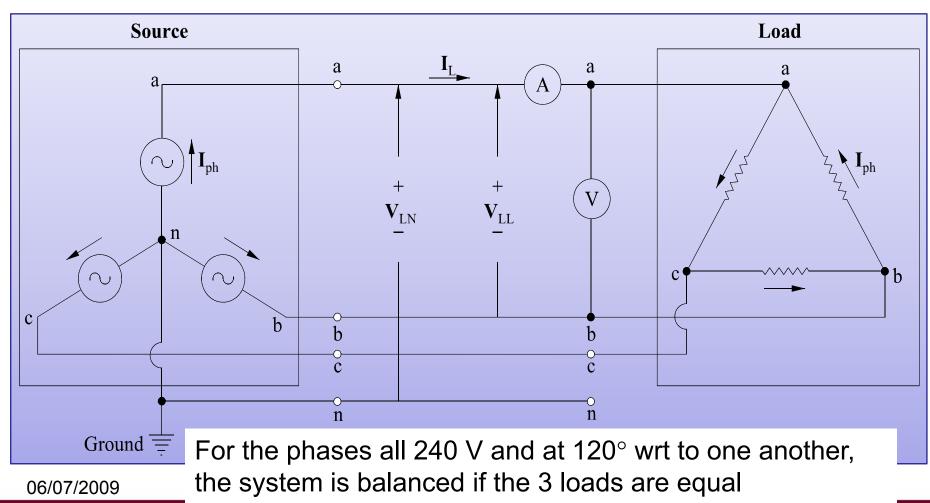
- Usually is being used in system that need high line current and low phase current.
- Connect all the conductor in series.
- No neutral line

06/07/2009

INSPIRING CREATIVE AND INNOVATIVE MINDS

An example of three phase connections

www.utm.my



INSPIRING CREATIVE AND INNOVATIVE MINDS

Definitions

www.utm.my

Commonly AC power is a three-phase (3-Φ) supply system as shown The 240 Volts single phase supply is just one part of such a multiphase system

It is a common practice to use the following to specify the voltage and

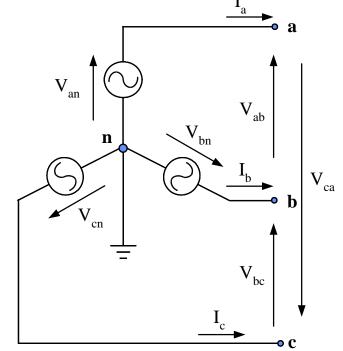
current ratings of the three phase devices:

 Voltage between external terminals (line-to-line voltage): V₁₁

 Current flowing in external lines (line current): I₁

V_{LL} and I_L are called 'line' quantities.

The voltages and currents internal to the device are referred to as 'Phase' quantities (e.g. phase-to-neutral voltage).



www.utm.my

For balanced systems the relationships are:

Star connection

Reference voltage: V_{an}

Phase current = Line current = I_L

The voltage from one live conductor to another is called the line-to-line voltages or simply line voltages

$$\triangleright$$
 e.g. V_{ab} , V_{bc} , V_{ca}

06/07/2009

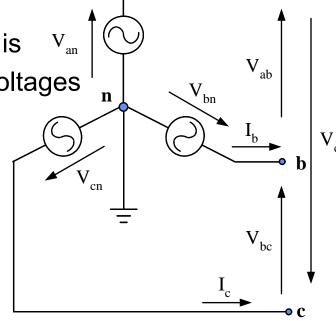
➤ To calculate V_{ab}, (KVL)

$$\mathbf{V_{ab}} = \mathbf{V_{an}} - \mathbf{V_{bn}}$$

$$= \mathbf{V_{an}} - \mathbf{V_{an}} \angle -120^{\circ}$$

$$= \mathbf{V_{an}} \left(1 - (-0.5 - j0.866)\right)$$

$$= \sqrt{3} \ \mathbf{V_{an}} \angle 30^{\circ}V$$



In a perfectly balanced system
$${f V_{an} + V_{bn} + V_{cn} = 0}$$

www.utm.my

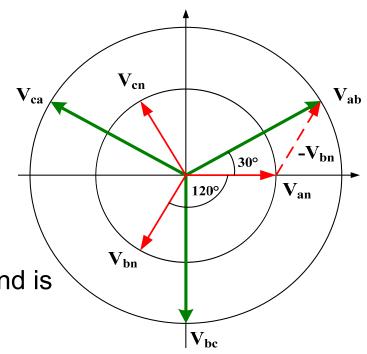
- The following vector diagram shows the relationship between phase angles of the phase and line voltages
- The 120° phase shift also exists between each line voltage

$$V_{ab} = \sqrt{3}V_{an} \angle 30^{\circ}$$

$$\mathbf{V_{bc}} = \sqrt{3}\mathbf{V_{bn}} \angle -90^{\circ}$$

$$V_{ca} = \sqrt{3} V_{cn} \angle -210^{\circ}$$

Line voltage (V_L) has magnitude $\sqrt{3} V_P$ and is leading phase voltage (V_{PH}) with 30°.



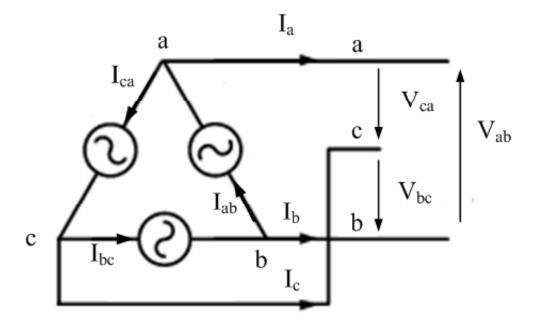
www.utm.my

For balanced systems the relationships are:

Delta connection:

Phase voltage = Line-to-Line Voltage = V_{LL}

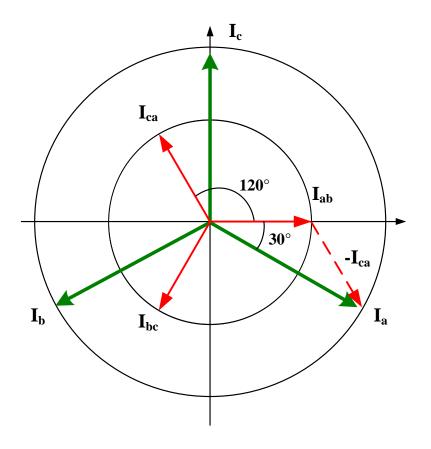
$$\begin{split} I_{ab} &= I_{ab} \angle 0^{\circ} = I_{P} \angle 0^{\circ} \\ I_{bc} &= I_{bc} \angle -120^{\circ} = I_{P} \angle -120^{\circ} \\ I_{ca} &= I_{ca} \angle 120 = I_{P} \angle 120^{\circ} \\ KCL: \\ &\Rightarrow I_{a} = I_{ab} - I_{ca} \\ &= I_{P} \angle 0^{\circ} - I_{P} \angle 120^{\circ} \\ &= I_{p} \left(1 - (-0.5 + j0.866)\right) \\ &= \sqrt{3} \ I_{P} \angle -30^{\circ} \end{split}$$



www.utm.my

$$I_{a} = I_{ab} - I_{ca} = \sqrt{3} I_{P} \angle -30^{\circ}$$
 $I_{b} = I_{bc} - I_{ab} = \sqrt{3} I_{P} \angle -150^{\circ}$
 $I_{c} = I_{ca} - I_{bc} = \sqrt{3} I_{P} \angle 90^{\circ}$

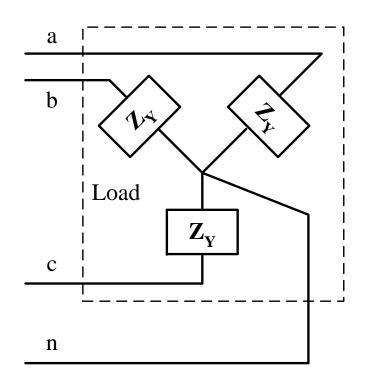
Line Current (I_L) lagging current phase (I_{PH}) with 30°.

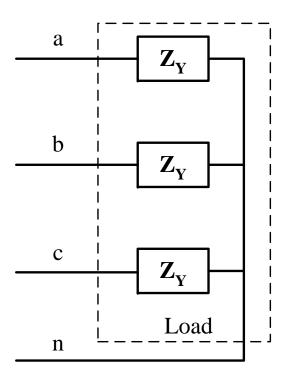


Loads

www.utm.my

Loads can also be connected in a 3-phase fashion



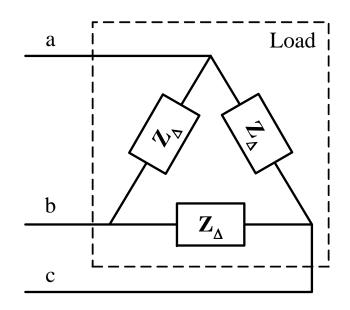


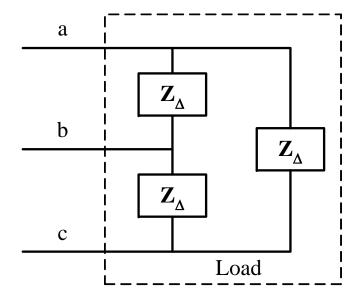
Star (Wye) connection of Load

Loads

www.utm.my

Loads can also be connected in a 3-phase fashion





Delta connection at the Load

3-Phase balanced system

www.utm.my

A 3-Phase 4 Wire Balanced System consists of a star connected source connected to a star connected load by 3 live wires and one neutral Such a system will be balanced if all the three loads are equal In a balanced system, $I_a+I_b+I_c=I_N$ \rightarrow The neutral current is zero at each

moment of time $\mathbf{V}_{an} = V_{phase} \angle 0^{\circ}$ $\mathbf{V}_{bn} = V_{phase} \angle -120^{\circ}$ $\mathbf{V}_{cn} = V_{phase} \angle -240^{\circ}$ $I_{a} = \frac{V_{an} \angle 0^{\circ}}{Z_{a}}$ where $V_{phase} = |V_{an}| = |V_{bn}| = |V_{cn}|$ 1x

$$I_a = \frac{V_{an} \angle 0}{Z_a}$$

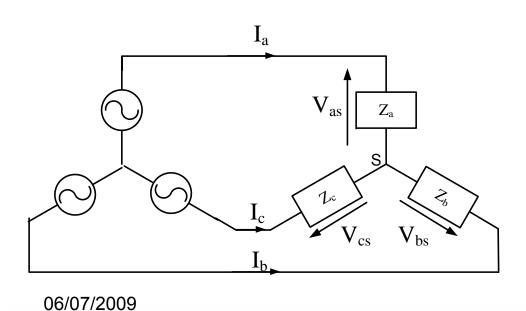
$$I_b = \frac{V_{bn} \angle -120^o}{Z_b}$$

$$I_c = \frac{V_{cn} \angle 120^o}{Z_c}$$

3-Phase balanced system

www.utm.my

Wye-Connected Balanced Loads - Three wire system



$$egin{aligned} \mathbf{V}_{as} &= V_{phase} \ \angle 0^{\circ} \ \mathbf{V}_{bs} &= V_{phase} \ \angle -120^{\circ} \ \mathbf{V}_{cs} &= V_{phase} \ \angle -240^{\circ} \ where \ V_{phase} &= \left|V_{as}\right| = \left|V_{bs}\right| = \left|V_{cs}\right| \end{aligned}$$

$$I_a = \frac{V_{as} \angle 0^o}{Z_a}$$

$$I_b = \frac{V_{bs} \angle -120^o}{Z_b}$$

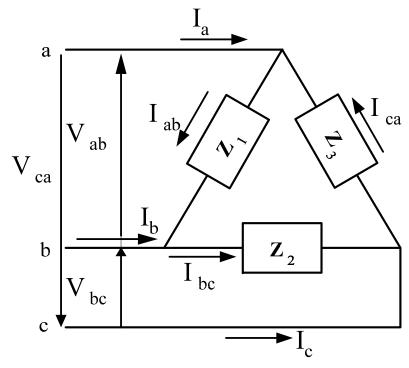
$$I_c = \frac{V_{cs} \angle 120^o}{Z_c}$$

INSPIRING CREATIVE AND INNOVATIVE MINDS

3-Phase balanced system

www.utm.my

Delta-Connected Balanced Loads



where $\left|\mathbf{I}_{\mathrm{RY}}\right| = \left|\mathbf{I}_{\mathrm{YB}}\right| = \left|\mathbf{I}_{\mathrm{BR}}\right| = \mathbf{I}_{\mathrm{phasa}}$

and $|\mathbf{I}_{R}| = |\mathbf{I}_{Y}| = |\mathbf{I}_{B}| = \mathbf{I}_{line}$

Phase currents:

$$\mathbf{I}_{ab} = \frac{\mathbf{V}_{ab} \angle 0^{\circ}}{\mathbf{Z}_{1}}$$

$$\mathbf{I}_{bc} = \frac{\mathbf{V}_{bc} \angle -120^{\circ}}{\mathbf{Z}_{2}}$$

$$\mathbf{I}_{ca} = \frac{\mathbf{V}_{ca} \angle 120^{\circ}}{\mathbf{Z}_{2}}$$

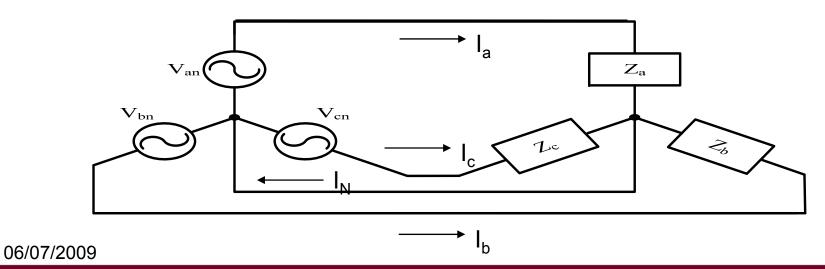
Line currents:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

www.utm.my

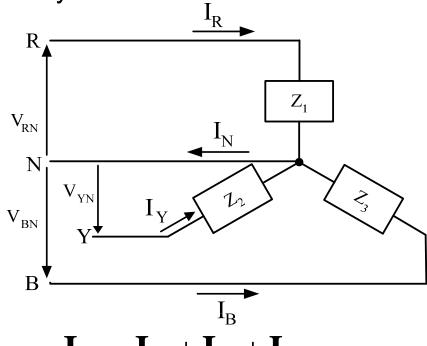
Given a balanced three phase four wire system with a wye-connected inductive load whose series impedance is: Z = 4 + j4 (per phase), and a 415 V supply,

- i) Calculate the phase and line voltages
- ii) Line currents
- iii) Demonstrate that the neutral current is zero



www.utm.my

Wye-Connected unbalanced Loads - Four wire system



$$\mathbf{I}_{\mathbf{N}} = \mathbf{I}_{\mathbf{R}} + \mathbf{I}_{\mathbf{Y}} + \mathbf{I}_{\mathbf{B}}$$

For unbalanced load system, $I_N \neq 0$ and $Z_1 \neq Z_2 \neq Z_3$

$$egin{aligned} \mathbf{V}_{\mathrm{RN}} &= \mathbf{V}_{\mathrm{phasa}} \ \angle \mathbf{0}^{\circ} \ \mathbf{V}_{\mathrm{YN}} &= \mathbf{V}_{\mathrm{phasa}} \ \angle -120^{\circ} \ \mathbf{V}_{\mathrm{BN}} &= \mathbf{V}_{\mathrm{phasa}} \ \angle 120^{\circ} \end{aligned}$$

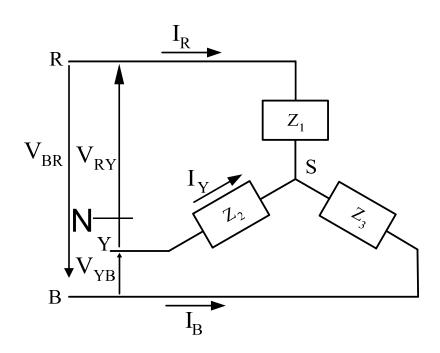
$$I_{R} = \frac{V_{RN} \angle 0^{\circ}}{Z_{1}}$$

$$I_{Y} = \frac{V_{YN} \angle -120^{\circ}}{Z_{2}}$$

$$I_{B} = \frac{V_{BN} \angle 120^{\circ}}{Z_{2}}$$

www.utm.my

Wye-Connected unbalanced Loads - Three wire system



Note:

Point N # Point S

Potential between two point, displacement Neutral voltage, V_{SN}

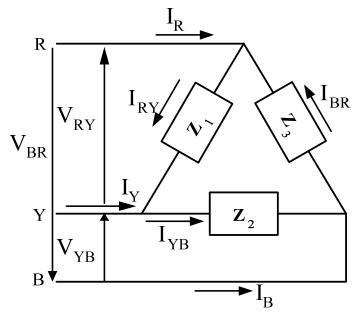
www.utm.my

Two methods to solve Wye-Connected unbalanced Loads i.e. three wire/without neutral:

- Change star connection to delta (Refer: Y- Star to delta transformation)
 - Calculate I_{PH} from delta
 - ➤ Calculate I_L using KCL
 - Phase current (star) = line current (delta) because line I=phase I in Y connection
- Using loop analysis
 - Indicate direction of loop current
 - Write loop equations
 - Calculate loop current

www.utm.my

Delta-Connected unbalanced Loads - Three wire system



$$V_{RY} = V_{phase} \angle 0^{\circ}$$
 $V_{YB} = V_{phase} \angle -120^{\circ}$
 $V_{BR} = V_{phase} \angle 120^{\circ}$

Phase currents:

$$I_{RY} = \frac{V_{RY} \angle 0^{\circ}}{Z_{1}}$$

$$I_{YB} = \frac{V_{YB} \angle -120^{\circ}}{Z_{2}}$$

$$I_{BR} = \frac{V_{BR} \angle 120^{\circ}}{Z_{2}}$$

Line currents:

$$\begin{split} \boldsymbol{I}_{R} &= \boldsymbol{I}_{RY} - \boldsymbol{I}_{BR} \\ \boldsymbol{I}_{Y} &= \boldsymbol{I}_{YB} - \boldsymbol{I}_{RY} \\ \boldsymbol{I}_{B} &= \boldsymbol{I}_{BR} - \boldsymbol{I}_{YB} \end{split}$$

www.utm.my

Given an unbalanced delta-connected load which is:

$$Z_1$$
 = 6 + j8 Ω (per phase), Z_2 = 4 - j3 Ω , Z_3 = 8 + j6 Ω , Supply=110 V

- i) Calculate the phase and line currents
- ii) Construct the phasor diagram

www.utm.my

A 3-Phase 4 Wire unbalanced load is supplied by a three phase 220V.

The impedance per phase are as follows:

$$Z_1$$
 = 10 \angle -50° Ω , Z_2 = 15 \angle 25° Ω , and Z_3 = 5 \angle -90° Ω

- i) Calculate the line currents and neutral current
- ii) Construct the phasor diagram

www.utm.my

A balanced line voltage 415 V is supplied to the three impedance as follows:

 Z_1 = 10 \angle 30° Ω , Z_2 = 20 \angle 60° Ω , and Z_3 = 10 \angle -45° Ω .

Note: All the three impedance form Y connected without neutral line.

- i) Calculate the line currents
- ii) Calculate the voltage across each impedance

www.utm.my

A 3 phase supply, 4 wire, 415 V, 50Hz supplies power to the loads. The values of loads are given below:

Load 1 : $P_1 = 11$ kW, p.f 0.85 lag

Load 2 : $Q_2 = 8 \text{ kVar}$, p.f 0.8 lag

Load 3 : $S_3 = 15 \text{ kVA}$, p.f 0.75 lag

 Z_4 = 10∠15° Ω

Calculate the line currents (I_R , I_Y , and I_B) Hint: Choose V_{RN} as a reference

www.utm.my

A factory is supplied by a balanced three phase source. The factory has two plants, each a balanced three phase load as follows:

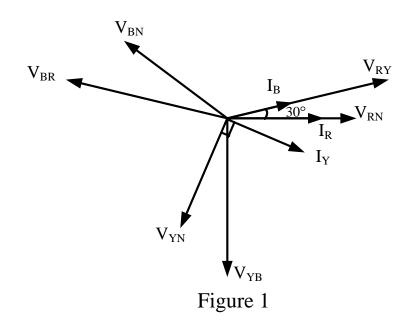
i) Load 1: 150 kVA at 0.8 pf leading – Y connected

ii) Load 2: 80 kW and 95 kVAR (inductive)- delta connected

The loads are connected in parallel. Assume a lossless line, find the current at each load and total current if the source voltage is 415 V.

www.utm.my

A 3 phase Y connected load is supplied by a three phase source 346.4 V, 50Hz. The magnitudes of line currents are $I_R = 50$ A, $I_Y = 40$ A and $I_B = 33.33$ A. By using a phasor diagram in figure 1, calculate the each load impedance value. Choose phase R voltage as a reference.



www.utm.my

Three similar coils having 20 Ω resistance and 0.8 H inductance are connected in Y for a three phase supply 400 V, 50 Hz.

- I) Calculate per phase impedance
- ii) Total real power of the loads

www.utm.my

The three phase power is equal to the algebraic sum of individual phase powers

If the load is balanced: $P_{3ph} = 3 P_{phase} = 3 V_{phase} I_{phase} \cos \theta$

Wye connection system

$$I_{phase} = I_{L}$$
 and $V_{LL} = \sqrt{3} V_{phase}$

Real Power, $P_{3ph} = 3 V_{phase} I_{phase} \cos \theta$

$$= \sqrt{3} |V_{LL}| |I_{L}| \cos \theta Watt$$

www.utm.my

Wye connection system

I phase = I_L and
$$|V_{LL}| = \sqrt{3} |V_{phase}|$$

Reactive power,
$$Q_{3ph} = 3 V_{phase} I_{phase} \sin \theta$$

$$= \sqrt{3} |V_{LL}| |I_L| \sin\theta \ VAr$$

Apparent power,
$$S_{3ph} = 3 V_{phase} I_{phase}$$

$$= \sqrt{3} |V_{LL}| |I_L| VA$$

www.utm.my

Delta connection system

$$V_{LL} = V_{phase}$$
 $I_L = \sqrt{3} I_{phase}$

Real Power, $P = 3 V_{phase} I_{phase} \cos \theta$

$$=\sqrt{3}|V_{LL}||I_L|\cos\theta$$
 Watt

Reactive power, $Q_{3ph} = 3 V_{phase} I_{phase} \sin \theta$

$$= \sqrt{3} |V_{LL}| |I_L| \sin\theta \ VAr$$

Apparent power, $S_{3ph} = 3 V_{phase} I_{phase}$

$$= \sqrt{3} |V_{LL}| |I_L| VA$$

www.utm.my

For connection of wye as well as delta, the formula for calculation of all the 3\phi powers that are P(real), Q(reactive) and S(apparent) are the same

www.utm.my

A balanced wye-connected load of $(8+j6)\Omega$ per phase is connected to a balanced 3-phase 400V supply. Find:

- i)line currents
- ii)power factor
- iii) Real power, Reactive power and total volt-amperes.

Three impedances each of magnitude $(15-j20)\Omega$ are connected in delta across a 3 phase, 400V supply. Determine the phase current, line current, real power and reactive power drawn from the supply.

Power measurement

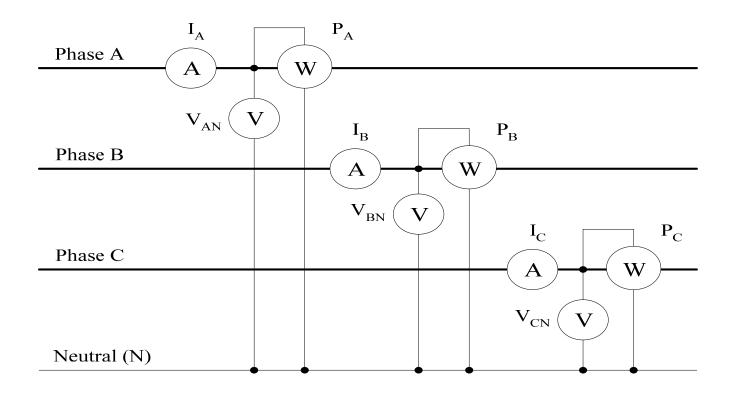
www.utm.my

- In a four-wire system (3 phases and a neutral) the real power is measured using three single-phase watt-meters.
- In a three-wire system (three phases without neutral) the power is measured using only two single phase watt-meters.
- The watt-meters are supplied by the line current and the line-to-line voltage.

Power measurement

www.utm.my

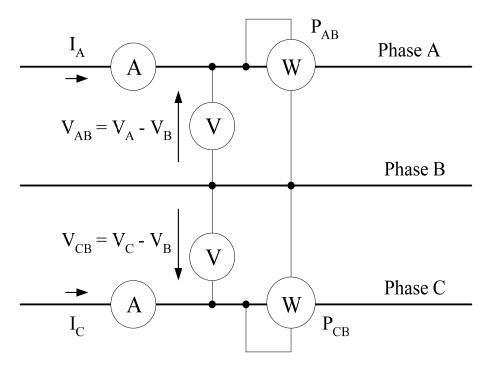
Four wire system - Each phase measured separately



Power measurement

www.utm.my

Three wire system -The three phase power is the sum of the two watt-meters reading



$$P_{3\phi} = P_{AB} + P_{CB}$$

$$V_{ab} = 110 \angle 0^{\circ}V$$

 $I_a = 20 \angle -70^{\circ}A$

$$I_a = 20 \angle -70^{\circ} A$$

www.utm.my

