
02: Elementary Programming
Programming Technique I

(SCSJ1013)

What a Is a Program Made Of?
• Common elements in programming languages:

– Key Words
– Programmer-Defined Identifiers
– Operators
– Punctuation
– Syntax

Key Words
• Also known as reserved words
• Have a special meaning in C++
• Can not be used for another purpose
• Written using lowercase letters
• Examples in program (shown in green):
using namespace std;int main()

1-3

Example Program
#include <iostream>using namespace std;
int main() { double num1 = 5, num2, sum;num2 = 12;

sum = num1 + num2;cout << "The sum is " << sum;return 0;}
1-4

Operators
• Used to perform operations on data
• Many types of operators

– Arithmetic: +, -, *, /
– Assignment: =

• Examples in program (shown in green):num2 = 12;sum = num1 + num2;

1-5

Example Program
#include <iostream>using namespace std;
int main() { double num1 = 5, num2, sum;num2 = 12;

sum = num1 + num2;cout << "The sum is " << sum;return 0;}
1-6

Punctuation
• Characters that mark the end of a statement, or that separate items in a list
• Example in program (shown in green):double num1 = 5, num2, sum;num2 = 12;

1-7

Example Program
#include <iostream>using namespace std;
int main() { double num1 = 5, num2, sum;num2 = 12;

sum = num1 + num2;cout << "The sum is " << sum;return 0;}
1-8

The #include Directive
• Inserts the contents of another file into the program
• Is a preprocessor directive

– Not part of the C++ language
– Not seen by compiler

• Example:
#include <iostream>

2-9

No ; goes here

Comments
• Are used to document parts of a program
• Are written for persons reading the source code of the program

– Indicate the purpose of the program
– Describe the use of variables
– Explain complex sections of code

• Are ignored by the compiler
2-10

Single-Line Comments
• Begin with // through to the end of line

int length = 12; // length in inches
int width = 15; // width in inches
int area; // calculated area
// Calculate rectangle area
area = length * width;

2-11

Multi-Line Comments
• Begin with /* and end with */
• Can span multiple lines

/*----------------------------Here's a multi-line comment ----------------------------*/
• Can also be used as single-line comments

int area; /* Calculated area */

2-12

The Parts of a C++ Program

2-13

Statement Purpose
// sample C++ program comment
#include <iostream> preprocessor directive
using namespace std; which namespace to use
int main() beginning of function named main
{ beginning of block for main

cout << "Hello, there!"; output statement
return 0; send 0 back to the operating system

} end of block for main

Special Characters

2-14

Character Name Description
// Double Slash Begins a comment
Pound Sign Begins preprocessor directive
< > Open, Close Brackets Encloses filename used in #include directive
() Open, Close Parentheses Used when naming function
{ } Open, Close Braces Encloses a group of statements
" " Open, Close Quote Marks Encloses string of characters
; Semicolon Ends a programming statement

Important Details
• C++ is case-sensitive. Uppercase and lowercase characters are different characters. ‘Main’ is not the same as ‘main’.
• Every {must have a corresponding }, and

vice-versa.

2-15

Variables

Variables
• A variable is a named location in computer memory (in RAM)
• It holds a piece of data
• It must be defined before it can be used
• Example variable definition:

double num1;

1-17

Example Program
#include <iostream>using namespace std;
int main() { double num1 = 5, num2, sum;num2 = 12;

sum = num1 + num2;cout << "The sum is " << sum;return 0;}
1-18

Variables, Constants, and the Assignment Statement
• Variable

– Has a name and a type of data it can hold

char letter;
– Is used to reference a location in memory where a value can be stored
– Must be defined before it can be used
– The value that is stored can be changed, i.e., it can “vary”

2-19

variable namedata type

Variables
– If a new value is stored in the variable, it replaces the previous value
– The previous value is overwritten and can no longer be retrieved

int age;
age = 17; // age is 17
cout << age; // Displays 17
age = 18; // Now age is 18
cout << age; // Displays 18

2-20

Variables: Example

Identifiers

Identifiers
• Programmer-chosen names to represent parts of the program, such as variables
• Name should indicate the use of the identifier
• Cannot use C++ key words as identifiers
• Must begin with alphabetic character or _, followed by alphabetic, numeric, or _ . Alpha may be uppercase or lowercase
• Example in program (shown in green):

double num1

Example Program
#include <iostream>using namespace std;
int main() { double num1 = 5, num2, sum;num2 = 12;

sum = num1 + num2;cout << "The sum is " << sum;return 0;}
1-24

Valid and Invalid Identifiers

2-25

IDENTIFIER VALID? REASON IF INVALID
totalSales
total_Sales
total.Sales
4thQtrSales
totalSale$

Lines vs. Statements
In a source file,

A line is all of the characters entered before a carriage return.
Blank lines improve the readability of a program.
Here are four sample lines. Line 3 is blank:

double num1 = 5, num2, sum;num2 = 12;
sum = num1 + num2;

1-26

Lines vs. Statements
In a source file,

A statement is an instruction to the computer to perform an action.
A statement may contain keywords, operators, programmer-defined identifiers, and punctuation.
A statement may fit on one line, or it may occupy multiple lines.
Here is a single statement that uses two lines:double num1 = 5, num2, sum;

1-27

Literals
• Literal: a value that is written into a program’s code.

– "hello, there" (string literal)
– 12 (integer literal)

Literals: Example

Literals: Example

In-Class Exercise
Examine the following program. List all the variables and literals
that appear in the program.
#include <iostream>
using namespace std;
int main()
{ int little;

int big;
little = 2;
big = 2000;
cout<<"The little number is " <<little<<endl;
cout<<"The big number is "<<big<<endl;
return 0;

}

In-Class Exercise
What will the following program display on the screen?
#include <iostream>
using namespace std;
int main()
{

int num;
num = 712;
cout<< "The value is " << num << endl;
return 0;

}

Input and Output

Input using cin

The cin Object
• Standard input object
• Like cout, requires iostream file
• Used to read input from keyboard
• Information retrieved from cin with >>
• Input is stored in one or more variables

The cin Object
• cin converts data to the type that matches the variable:

int height;
cout << "How tall is the room? ";
cin >> height;

The cin Object
• Can be used to input more than one value:

cin >> height >> width;
• Multiple values from keyboard must be separated by spaces
• Order is important: first value entered goes to first variable, etc.

Displaying a Prompt
• A prompt is a message that instructs the user to enter data.
• You should always use cout to display a prompt before each cin statement.
cout << "How high is the room? ";
cin >> height;

Reading Strings with cin
• Can be used to read in a string
• Must first declare an array to hold characters in string:

char myName[21];
• myName is a name of an array, 21 is the number of characters that can be stored (the size of the array), including the NULL character at the end
• Can be used with cin to assign a value:

cin >> myName;

In-Class Exercise
• Solve the problem. Add array of characters to the output.
Sample of output:Enter an integer: 7Enter a decimal number : 2.25Enter a single character : REnter an array of characters: Programming

Output using cout

The cout Object
• Displays information on computer screen
• Use << to send information to cout

cout << "Hello, there!";
• Can use << to send multiple items to cout

cout << "Hello, " << "there!";
Or cout << "Hello, ";cout << "there!";

2-45

Starting a New Line
• To get multiple lines of output on screen

- Use endl
cout << "Hello, there!" << endl;

- Use \n in an output string
cout << "Hello, there!\n";

Notice that the \n is INSIDE
the string.

In-Class Exercise
• Rearrange the following program statements in the correct order.
int main()
}
return 0;
#include <iostream>
cout<<"In 1492 Columbus sailed the ocean
blue.";

{
using namespace std;
• What is the output of the program when it is properly

arranged?

Data type and constant

Number Systems
• Numbers can be represented in a variety of ways.
• The representation depends on what is called the BASE.
• You write these numbers as:

– Number base

Number Systems
• The following are the four most common representations.
• Decimal (base 10)

– Commonly used
– Valid digits are from 0 to 9
– Example: 12610 (normally written as just 126)

• Binary (base 2)
– Valid digits are 0 and 1
– Example: 11111102

• The following are the four most common representations.
• Octal (base 8)

– Valid digits are from 0 to 7
– Example: 1768

• Hexadecimal (base 16)
– Valid digits are from 0 to 9 and A to F (or from a to f)
– Example: 7E16

Integer Data Types
• Designed to hold whole numbers
• Can be signed or unsigned

12 -6 +3
• Available in different sizes (i.e., number of bytes): short, int, and long
• Size of short  size of int  size of long

2-52

Integral Constants
• To store an integer constant in a long memory location, put ‘L’ at the end of the number:
1234L

• Constants that begin with ‘0’ (zero) are octal, or base 8: 075
• Constants that begin with ‘0x’ are hexadecimal, or base 16: 0x75A

2-53

Floating-Point Data Types
• Designed to hold real numbers

12.45 -3.8
• Stored in a form similar to scientific notation
• Numbers are all signed
• 3 data types to represent floating-point numbers: float, double, and long double
• Size of float  size of double size of long double

2-54

Floating-point Constants
• Can be represented in

- Fixed point (decimal) notation:
31.4159 0.0000625

- E notation:
3.14159E1 6.25e-5

• Are double by default
• Can be forced to be float 3.14159F or long double 0.0000625L
2-55

Assigning Floating-point Values to Integer Variables
If a floating-point value is assigned to an integer variable
– The fractional part will be truncated (i.e., “chopped off” and discarded)
– The value is not rounded
int rainfall = 3.88; cout << rainfall; // Displays 3

2-56

The bool Data Type
• Represents values that are true or false
• The bool type takes one byte and stores a value of true (1) or false(0).
• false is represented by 0, true by 1

bool allDone = true;
bool finished = false;

2-57

allDone finished
1 0

The char Data Type
• Used to hold single characters or very small integer values
• Usually occupies 1 byte of memory
• A numeric code representing the character is stored in memory

2-58

SOURCE CODE MEMORY
char letter = 'C'; letter

67

The char Data Type
• Used to hold single characters or very small integer values
• Usually occupies 1 byte of memory
• A numeric code representing the character is stored in memory

2-59

SOURCE CODE MEMORY
char letter = 'C'; letter

67

In-Class Exercise
• What is wrong with the following program?
#include <iostream>
using namespace std;
int main()
{ char letter;

letter = "Z";
cout<<letter<<endl;
return 0;

}

Summary of data types
Name Description Size Range
char Character or small integer. 1byte signed: -128 to 127unsigned: 0 to 255
short int(short) Short Integer. 2bytes signed: -32768 to 32767unsigned: 0 to 65535
int Integer. 4bytes signed: -2147483648 to 2147483647unsigned: 0 to 4294967295
long int(long) Long integer. 4bytes signed: -2147483648 to 2147483647unsigned: 0 to 4294967295
bool Boolean value. It can take one of two values: true or false. 1byte true or false
float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)
double Double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)
long double Long double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)

Naming Constant

Named Constants
• Named constant (constant variable): variable whose content cannot be changed during program execution
• Used for representing constant values with descriptive names:

const double TAX_RATE = 0.0675;
const int NUM_STATES = 50;

• Often named in uppercase letters

Defining constants
• You can define your own names for constants that you use very

often without having to resort to memory-consuming variables, simply by using the #define preprocessor directive.
• Example:
#include <iostream>
using namespace std;
#define PI 3.14159
#define NEWLINE '\n‘
int main ()
{ double r=5.0;
double circle;
circle = 2 * PI * r;
cout << circle;
cout << NEWLINE; return 0;}

Declared constants (const)
• With the const prefix you can declare constants with a

specific type in the same way as you would do with a
variable

• Example:
#include <iostream>
using namespace std;
int main ()
{ double r=5.0,circle;

const double PI = 3.14159;
const char NEWLINE = '\n';
circle = 2 * PI * r;
cout << circle;
cout << NEWLINE; return 0;}

String Constant
• Can be stored a series of characters in consecutive memory locations

"Hello"
• Stored with the null terminator, \0, at end

• Is comprised of characters between the " "

2-66

H e l l o \0

A character or a string constant?
• A character constant is a single character, enclosed in single quotes:

'C'
• A string constant is a sequence of characters enclosed in double quotes:

"Hello, there!"
• A single character in double quotes is a string constant, not a character constant:

"C"
2-67

The C++ string Class
• Must #include <string> to create and use string objects
• Can define string variables in programs

string name;
• Can assign values to string variables with the assignment operatorname = "George";
• Can display them with coutcout << name;

2-68

Determining the Size of a Data Type
The sizeof operator gives the size of any data type or variable
double amount;
cout << "A float is stored in "

<< sizeof(float) << " bytes\n";
cout << "Variable amount is stored in
"

<< sizeof(amount) << " bytes\n";
2-69

More on Variable Assignments and Initialization
• Assigning a value to a variable

– Assigns a value to a previously created variable
– A single variable name must appear on left side of the = symbol

int size;size = 5; // legal 5 = size; // not legal

2-70

Variable Assignment vs. Initialization
• Initializing a variable

– Gives an initial value to a variable at the time it is created
– Can initialize some or all variables of definition
int length = 12;int width = 7, height = 5, area;

2-71

Scope
• The scope of a variable is that part of the program where the variable may be used
• A variable cannot be used before it is defined

int a;cin >> a; // legalcin >> b; // illegal int b;

2-72

In-Class Exercise
• Trace the following program. Can it be compiled?
#include <iostream>
using namespace std;
int main()
{

cout<<value;
int value;
return 0;

}

Arithmetic Expression

Arithmetic Operators and Expression

Arithmetic Operators
• Used for performing numeric calculations
• C++ has unary, binary, and ternary operators

– unary (1 operand) -5
– binary (2 operands) 13 - 7
– ternary (3 operands) exp1 ? exp2 : exp3

2-76

Binary Arithmetic Operators

2-77

SYMBOL OPERATION EXAMPLE ans
+ addition ans = 7 + 3; 10
- subtraction ans = 7 - 3; 4
* multiplication ans = 7 * 3; 21
/ division ans = 7 / 3; 2
% modulus ans = 7 % 3; 1

/ Operator
• C++ division operator (/)performs integer division if both operands are integers

cout << 13 / 5; // displays 2cout << 2 / 4; // displays 0
• If either operand is floating-point, the result is floating-point

cout << 13 / 5.0; // displays 2.6cout << 2.0 / 4; // displays 0.5
2-78

% Operator

• C++ modulus operator (%) computes the remainder resulting from integer division
cout << 9 % 2; // displays 1

• % requires integers for both operands
cout << 9 % 2.0; // error

2-79

In-Class Exercise
• Identify as many syntax errors as you can in the following program

/ what is wrong with this program?/
#include iostream
using namespace std;
int main();
}

int a, b, c
a=3
b=4
c=a+b
Cout<"The value of c is "<C;
return 0;

{

Order of Operations
In an expression with more than one operator, evaluation is in this order:

()
- (unary negation), in order, right to left
* / %, in order, left to right
+ -, in order, left to right

In the expression 2 + 2 * 2 – 2
evaluate firstevaluate second

evaluate third

Example
int z, y=-5;
z= 8 - 3 + 9 / 2 + 2 * - y;
z= 8 - (3 + 9 / 2) + 2 * - y;// try this

Order of Operations
Show prove for the following expression

Associativity of Operators
• - (unary negation) associates right to left
• *, /, %, +, - associate left to right
• parentheses () can be used to override the order of operations:

2 + 2 * 2 – 2 = 4
(2 + 2) * 2 – 2 = 6
2 + 2 * (2 – 2) = 2

(2 + 2) * (2 – 2) = 0

Grouping with Parentheses

Type Conversion

When You Mix Apples and Oranges: Type Conversion
• Operations are performed between operands of the same type.
• If not of the same type, C++ will convert one to be the type of the other
• This can impact the results of calculations.

Type Conversion
• Type Conversion: automatic conversion of an operand to another data type
• Promotion: convert to a higher type
• Demotion: convert to a lower type

Hierarchy of Types
Highest:

Lowest:
Ranked by largest number they can hold

long double
double
float
unsigned long
long
unsigned int
int

Conversion Rules
1) char, short, unsigned short automatically promoted to int

– For arithmetic operation
char c=‘A’; cout<<6+c; // int

2) When operating on values of different data types, the lower one is promoted to the type of the higher one.
int i=25; cout<<6.1+i; // float

3) When using the = operator, the type of expression on right will be converted to type of variable on left
int x, y =25; float z=2.5;
x=y+z; //int

Algebraic Expressions
• Multiplication requires an operator:

Area=lw is written as Area = l * w;
• There is no exponentiation operator:

Area=s2 is written as Area = pow(s, 2);
• Parentheses may be needed to maintain order of operations:

is written as
m = (y2-y1) /(x2-x1);12

12
xx
yym 



Algebraic Expressions

Postfix expression

Prefix expression

In-Class Exercise
• What would be the value of nilai_kedua:

int kira = 5;
int nilai_pertama = 10, nilai_kedua;
nilai_kedua= 5* kira-- + nilai_pertama;
nilai_kedua = 5* --kira +nilai+pertama;

Overflow and Underflow

Overflow and Underflow
• Occurs when assigning a value that is too large (overflow) or too small (underflow) to be held in a variable
• Variable contains value that is ‘wrapped around’ set of possible values
• Different systems may display a warning/error message, stop the program, or continue execution using the incorrect value

Type Casting

Type Casting
• Used for manual data type conversion
• Useful for floating point division using int:

double m;m = static_cast<double>(y2-y1)
/(x2-x1);

• Useful to see int value of a char variable:
char ch = 'C';
cout << ch << " is "

<< static_cast<int>(ch);

Example

C-Style and Prestandard Type Cast Expressions
• C-Style cast: data type name in ()

cout << ch << " is " << (int)ch;
• Prestandard C++ cast: value in ()

cout << ch << " is " << int(ch);
• Both are still supported in C++, although static_cast is preferred

Multiple Assignment and Combined Assignment

Multiple Assignment and Combined Assignment
• The = can be used to assign a value to multiple variables:

x = y = z = 5;
• Value of = is the value that is assigned
• Associates right to left:

x = (y = (z = 5));
valueis 5valueis 5valueis 5

Combined Assignment
• Look at the following statement:

sum = sum + 1;
This adds 1 to the variable sum.

Combined Assignment
• The combined assignment operators provide a shorthand for these types of statements.
• The statement

sum = sum + 1;
is equivalent to
sum += 1;

Combined Assignment Operators
Operator Example Equivalent to
+= i+=3i += j +3 i = i+3i = i + (j+3)
-= i-=3i -= j +3 i = i-3i = i - (j+3)
= i=3i *= j +3 i = i*3i = i * (j+3)
/= i/=3i /= j +3 i = i/3i = i / (j+3)
%= i%=3i %= j +3 i = i%3i = i % (j+3)

In-Class Exercise
Assume that int a = 1 and double d = 1.0, and that each expression is independent. What are the results of the following expressions?

i) a = 46/9;
ii) a = 46 % 9 + 4 * 4 – 2;
iii) a = 45 + 43 % 5 * (23 * 3 % 2);
iv) a %=3 / a + 3;
v) d += 1.5 * 3 + (++a);
vi) d -= 1.5 * 3 + a++;

