
01: PROGRAMMING PROBLEM-
SOLVING

Programming Technique I

(SCSJ1013)

Problem-Solving Process

The Programming Process

Programming Process

 Programming is a process of problem solving.

 Problem solving techniques
 Outline the problem requirements

 Analyze the problem

 Design steps (algorithm) to solve the problem

Programming Process

This week

Input, Process and Output

Input, Process and Output

Three steps that a program typically performs:

 Gather input
 from keyboard

 from files on disk drives

 Process the input

 Display the result as output
 send it to the screen

 write to a file

Example 1

 Identify an input, process and output to develop a program
to calculate area of a rectangle.

 Input data
 Length

 Width

 Process the input
 Area = Length * Width

 Output Data
 Area

In-Class Exercise 1

Identify the input, process and
output for a program to calculate
employee income tax based on the
following formula:

Tax = 0.25 * (monthly income *
11 – number of kids * 450)

Your program will display the name
of the employee and amount of tax
on the screen.

 Input data
 Name

 Monthly income

 Number of kids

 Process the input
 Tax = 0.25 * (Monthly

income * 11 – Number
of kids * 450)

 Output Data
 Name

 Tax

Procedural and
Object-Oriented Programming

Procedural and Object-Oriented
Programming

 Procedural programming (a.k.a structured programming) is
centered on procedures or functions (a.k.a modules).
Example language: C.

 Object-oriented programming (OOP), is centered on objects.
An object contains data and procedures. Example language:
C++.

Problem Solving Techniques

Problem Solving Methods

Three problem solving methods will be discussed in this class
are:

 Develop Algorithms
 Flowchart

 Pseudo code

 Top-down design
 Structured Chart

Algorithms

 Algorithm - a sequence of a finite number of steps arranged
in a specific logical order to produce the solution for a
problem.

 Algorithms requirements:
 Must have input

 Must produce output

 Unambiguous

 Generality

 Correctness

 Finiteness

 Efficiency (pg. 32)

Pseudo codes

Pseudo Code

 Pseudocode is a semiformal, English-like language with
limited vocabulary that can be used to design & describe
algorithms.

 Purpose- to define the procedural logic of an algorithm in a
simple, easy-to-understand for its readers.

 Free of syntactical complications of programming language.

Example: Pseudo Code

 Execution sequence follow the steps flow.

Example: Algorithm for

multiplying two numbers

1. Start

2. Get A

3. Get B

4. Calculate result,

C = A * B

5. Display result C

6. End

Execution

sequence

In-Class Exercise 1

Develop a pseudo code for a
program to calculate employee
income tax based on the following
formula:

Tax = 0.25 * (monthly income *
11 – number of kids * 450)

Your program will display the name
of the employee and amount of tax
on the screen.

1.Start

2.Get name

3.Get monthly_income

4.Get num_kids

5.Calculate tax:

tax = 0.25 *

(monthly_income *

11 – num_kids *

450)

6.Display name and

tax

7.End

Flowcharts

Flowchart

 Flowchart - represents an algorithm in graphical symbols.

 Two important element in flow chart:
 Geometrical shapes – represent type of statements in the algorithm

 Flow line – show the order in which the statements of an algorithm
are executed.

 Flowchart – a graph of geometrical shapes that are
connected by lines.

Example: Flowchart

 Algorithm for multiplying

two numbers

Start

Stop

Get A

Get B

Display the

Result C

Calculate Result

C = A * B

Flowchart Symbol

Terminal: Used to indicates the start and end of a flowchart. Single flowline. Only one “Start”

and “Stop” terminal for each program. The end terminal for function/subroutine must use

“Return” instead of “Stop”.

Process: Used whenever data is being manipulated. One flowline enters and one flowline exits.

Input/Output: Used whenever data is entered (input) or displayed (output). One flowline enters

and one flowline exits.

Decision: Used to represent operations in which there are two possible selections. One flowline

enters and two flowlines (labelled as “Yes” and “No”) exit.

Function / Subroutine: Used to identify an operation in a separate flowchart segment (module).

One flowline enters and one flowline exits.

On-page Connector: Used to connect remote flowchart portion on the same page. One flowline

enters and one flowline exits.

Off-page Connector: Used to connect remote flowchart portion on different pages. One flowline

enters and one flowline exits.

Comment: Used to add descriptions or clarification.

Flowline: Used to indicate the direction of flow of control.

(pg. 39)

Flowchart Symbol

Flowchart Explanation

Start

Stop

Get A

Get B

Display the

Result C

Calculate Result

C = A * B

Start Terminal.
Program start here

Stop Terminal
Program end here

Input.
Enter values for A and B

Process.

Output

Example: Use of comments/
description

Start

Read N,
M

Stop

N = The number of students
M = The number of subjects

No

Yes

Example: Use of connectors on the
same page

Start

2

1

1

2

Stop

Yes

No

1- connection on the same
flowchart portion

2- connection on the different
flowchart portion

Example: Use of connectors on the
different page

Start

1

1

2

Yes

No

Stop

2

Page 1 Page 2

In-Class Exercise

Draw a flowchart for a program to
calculate employee income tax
based on the following formula:

Tax = 0.25 * (monthly income *
11 – number of kids * 450)

Your program will display the name
of the employee and amount of tax
on the screen.

Start

Stop

Get Name,
Monthly_income,

num_kids

Display the
Name and Tax

Calculate Tax = 0.25 *
(Monthly_income * 11 –

num_kids * 450)

Flowchart Structures

Control Structure

 Describe the flow of execution

 Basic types of control structure:
 Sequential

 Selection

 Repetition

Flowchart Structures: Sequential

Sequential Structure

 A series of steps or statements that are executed in the order
they are written in an algorithm.

 Pseudo code - Mark the beginning and end of a block of
statements.

1. Start

2. Statement_1

3. Statement_2

4. Statement_3

: :

n. Statement_n

n+1. End

Sequential Structure: Flowchart

 Multiple statements considered as one statement.

statement

statement

statement


Statement simply means

command or instruction

Start

Stop

Read
Length,
Width

Print
Area,

Perimeter

Calculate Area
Area = Length * Width

Calculate Perimeter
Perimeter =

2 * (Width + Length)

Input:

Length = 5

Width = 3

Process:

Area = 5 * 3 = 15

Process:

Perimeter =

2* (5+3) = 16

Output

Area = 15

Perimeter = 16

Flowchart Tracing

Trace Table

 Trace tables allow developers to test their algorithms in order
to make sure there are no logic errors.

 Within the trace table, each variable, conditional test and
output must be listed.

 Example:

Length Width Area Perimeter Output

10 15 150 50 Area = 150, Perimeter = 50

20 20 400 80 Area = 400, Perimeter = 80

30 15 450 90 Area = 450, Perimeter = 90

In-Class Exercise 1

Trace the content of the variables and determine the output of
the following algorithm, if the input for Radius is:

a. 3 b. 10 c. 150

Algorithm 1: Compute the area of a circle

1. Start

2. Set PI = 3.14159

3. Read the Radius

4. Calculate the area of a circle using the

formula:

Area = Radius x Radius x PI

5. Display Area

6. End

In-Class Exercise 2

Execute the flowchart using
the following input values:

a. 89

b. 26

c. 0

d. 3

N is even
number

Read N

N is odd
number

(N % 2) = = 0
True

False

Start

End

Flowchart Structures: Selection

Selection Structure

 Selection allows you to choose between two or more
alternatives; that is it allows you to make decision.

 Decisions made by a computer must be very simple since
everything in the computer ultimately reduces to either true
(1) or false (0).

 If complex decisions are required, it is the programmer’s job
to reduce them to a series of simple decisions that the
computer can handle.

• Problem 1: Determine whether profit, return capital or loss.

• Problem 2: Determine whether a number is even or odd.

• Problem 3: Determine whether the marks is less than 60%. If
it is less than 60, then print “fail”, otherwise print “pass”.

• Problem 4: Determine whether the speed limit exceeds 110
km per hour. If the speed exceeds 110, then fine = 300,
otherwise fine = 0. Display fine.

• Problem 5: Determine whether the age is above 12 years old.
If the age is above 12, then ticket = 20, otherwise ticket = 10.
Display ticket.

Selection Structure: Problem
Examples

Selection Structure (cont..)

Algorithm: one choice selection

:

n. if condition

n.1 statement

n+1. end_if

:

• Pseudo code – requires the use of the keywords if.

Selection Structure (cont..)

If

(one-choice)

condition

statement

TRUE

FALSE  statement

If set condition is true, execute the statement,

else do nothing

“do or don’t”

condition

Example

 Determine whether an input number is even. If the number
is even, print “This is even number”.

Pseudocode

1. Start

2. Read n

3. If n modulus 2 == 0

1. Print “This is an even number”

4. End if

5. End

Flowchart
Start

Read n

n % 2 =
0

Print “this
is an even
number”

End

True
False

Selection Structure
(cont..)

• Pseudo code – requires the use of the keywords if and

else.

Algorithm: two choices selection

:

n. if condition

n.1 statement

:

n+1. else

n+1.1 statement

:

n+2. end_if

:

Selection Structure (cont..)

If-else
(two-choices)

condition

Statement 2Statement 1

°

 statement

If set condition is true, execute the first

statement, else execute second statement

TRUE FALSE

“do this or do that”

condition

Example

• Determine whether an input number is even
or odd. If the number is even, print “This is
even number”. Else, print “This is odd
number”.

Pseudocode

1. Start

2. Read n

3. If n modulus 2 = 0

1. Print “This is an even number”

2. Go step 6

4. Else

1. Print “This is an odd number”

5. End if

6. End

Flowchart
Start

Read n

n % 2 = 0

Print “this
is an even
number”

End

True
False

Print “this
is an odd
number”

Selection Structure –
Problem Examples

 Used to compare numbers to determine relative order

 Operators:

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

Relational Expressions

 Boolean expressions – true or false

 Examples:

12 > 5 is true
7 <= 5 is false
if x is 10, then
x == 10 is true,
x != 8 is true, and
x == 8 is false

Logical Operators

 Used to create relational expressions from other relational
expressions

 Operators, meaning, and explanation:

&& AND New relational expression is true if both
expressions are true

|| OR New relational expression is true if either
expression is true

! NOT Reverses the value of an expression – true
expression becomes false, and false becomes
true

Truth Table

OR (||)

P Q P||Q

T T T

T F T

F T T

F F F

AND (&&)

P Q P && Q

T T T

T F F

F T F

F F F

Logical Operators -
examples

int x = 12, y = 5, z = -4;

(x > y) && (y > z) true

(x > y) && (z > y) false

(x <= z) || (y == z) false

(x <= z) || (y != z) true

!(x >= z) false

Start

Stop

Read Num

Print

"Category A"

Yes

Num>0? No

Print

"Category B"

Example:
What is the output of the following flowchart when the input Num= 10

Num = 10

10 > 0 ? => YES

Input:

Num <- 10

Enter a Number >> 10

Output:

“Category A”

Category A

Start

Stop

Read Num

Print

"Category A"

Yes

Num>0? No

Print

"Category B"

Example:
What is the output of the following flowchart when the input is Num= 0

Num = 0

0 > 0 ? => NO
Output:

“Category B”

Input:

Num <- 0

Enter a Number >> 0

Category B

Output:

“Category A”

Category A

Start

Stop

Print

Result

Result=Result + Count

Count=Count - 1

Initialize

Result=0

Count=Num

Count>0?

Read Num

No

Print Count

Yes

Example:
What is the output of the following flowchart when the input Num= 4

Input:

Num <- 4

Enter a Number => 4

Variables (in memory):

Num []

Result []

Count []

Variables (in memory):

Num [4]

Result []

Count []

Count = 4

4 > 0 ? => YES

Variables (in memory):

Num [4]

Result [0]

Count [4]

Count: 4

Variables (in memory):

Num [4]

Result [4] 0 + 4

Count [3] 4 - 1

Count: 3

Count = 3

3 > 0 ? => YES

Variables (in memory):

Num [4]

Result [7] 4 + 3

Count [2] 3 - 1

Count: 2

Count = 2

2 > 0 ? => YES

Variables (in memory):

Num [4]

Result [9] 7 + 2

Count [1] 2 - 1

Count: 1

Count = 1

1 > 0 ? => YES

Variables (in memory):

Num [4]

Result [10] 9 + 1

Count [0] 1 - 1

Count: 0

Count = 0

0 > 0 ? => NO

Result: 10

In-Class Exercise
Start

Read itemName,
tagcolor, price

tagcolor == “Red”
&& price > 100.00

Print
itemName,
nettprice

End

True

False

tax = 10%

nettprice = price - tax

nettprice = price

What will be the output for

the following input?

Book Green 350.00

Curtain Red 500.00

In-Class Exercise 2

• Write a pseudo code for a program that will
accept 2 numbers. If the first number is greater
than the second number, find the difference
between the numbers and print the numbers and
difference value. If the second number is greater
than the first number, find the sum of the two
values and print the numbers and the sum.

• Draw the flowchart for the pseudo code.

• Trace the algorithm with the following input.
Write the output: 40 50

70 30

In-Class Exercise 3

• Write down an algorithm (pseudo code) and
draw a flowchart to read two numbers. If the
first number is greater than the second
number and it is larger than 50, find the sum
and print the sum. Else, print the difference.

• Verify your result by a trace table. (Use 52, 30
as the numbers read)

Selection Structure (cont..)

• Pseudo code – nested if.

Algorithm: nested if

:

n. if condition

:

n.m if condition

n.m.1 statement

:

n+1. end_if

:

Selection Structure (cont..)

Considered as

one statement

Nested if

(if within if)

test1

test2

statement

FALSE

FALSE

TRUE

TRUE



test1
FALSE

TRUE

it is an “one-choice” if

Selection Structure (cont..)

• Pseudo code – nested if using if-else if.

Algorithm: if-else if

:

n. if condition

n.m if condition

n.m.1 statement

:

n+1. else

n+1.m.1 statement

:

n+2. end_if

:

Selection Structure (cont..)

Complex if-else & if Statements

x

condition

statement

condition

statement

statement TRUE

TRUE

FALSE

FALSE

Considered as one statement

Selection Structure (cont..)

• Pseudo code – nested if using if-else if- else if - else.

Algorithm: if-else if – else if -

else

:

n. if condition

n.m statement

n+1 else if condition

n+1.1 statement

:

n+2 else if condition

n+2.1 statement

n+3 else

n+3.1 statement

n+4 end_if

:

X

condition

statementcondition

condition

statement

statement

statement

T

F

F

F

T

T

In-Class Exercise 1

• Suppose we want to associate noise loudness
measured in decibels with the effect of the
noise. The following table shows the
relationship between noise levels and human
perception of noises. Draw a flow chart.

Loudness in decibels (db) Perception

50 or lower Quiet

51-70 Intrusive

71 – 90 Annoying

91- 110 Very annoying

Above 110 uncomfortable

In-Class Exercise 2
• Write a pseudo code for nested if as illustrated

in the flow chart below:

pH >
7

pH==7
pH<12

pH>2

“alkaline”

“Acidic”

“Very
acidic”

“Very
alkaline”

“neutral”

true

true

true

false

false

false

In-Class Exercise 3

• Write a pseudo code and draw a flow chart for
a program that will implement the following
decision table. The program will print the
transcript message based on the input grade
point.

Grade Point Average Transcript Message

0.0 – 0.99 Failed

1.0 – 1.99 On probation

2.0 – 2.99 Average

3.0 – 3.49 Dean’s List

3.5 – 4.00 Highest Honors

Flowchart Structures: Repetition

Repetition Structure

 Specifies a block of one or more statements that are
repeatedly executed until a condition is satisfied.

 Usually the loop has two important parts:
 An expression that is tested for a true/false,

 A statement or block that is repeated as long as the expression is
true

 2 styles of repetition or loop
 Pre-test loop

 Post test loop

Repetition Structure -
Counters

• Counter: Can be used to control execution of the loop (loop
control variable)

• It will increment or decrement each time a loop repeat

• Must be initialized before entering loop

Repetition Structure:
Pre-Test Loop

• Pseudo code – requires the use of the keywords while for pre-test

loop.

Algorithm: one choice selection

:

n. while condition

n.1 statement

:

n+1. end_while

:

Repetition Structure
(cont..)

while Loop

(pre-test loop)

condition

body of loop

While a set condition is true, repeat statement (body

of loop)

TRUE

FALSE
condition

 statement

Repetition Structure
(cont..)

x

initialization

°

condition

body of loop

increment

y

FALSE

TRUE

cnt = 0

cnt < 5

cnt = cnt + 1

FALSE

TRUE

Start

Print “Programming”

End

Pre-test loop steps summary

 Counter-controlled loop
 Initialization of counter: counter = 0

 Testing of counter value: counter > n

 Updating of counter value (increase by 1) during each iteration:
counter = counter + 1

Example

 Suppose we want to write a program to compute a sum of
the first 10 positive integers.

 Steps:
 How many repetition?

• Initialization

• Condition to check for the counter?

• Update of counter

Pseudo code

1. Start

2. Set sum=0, counter = 0

3. While (counter < 10)

3.1 sum = sum + counter

3.2 counter = counter + 1

4. End_While

5. Display sum

6. End

Flow Chart

Start

sum = 0, counter = 1

counter
< 10

sum = sum + counter End

print sum

counter = counter + 1

false

true

Trace the following

Start

sum = 0, counter = 0

counter
< 5

sum = sum + n

End

print
sum

counter = counter+1

false

true

read n

What is the output for the

following input:

20 30 40 50 10

Repetition Structure:
Post-Test

• Pseudo code – requires the use of the keywords repeat..until for

post-test loop.

Algorithm: one choice selection

:

n. Do

n.1 statement

:

n+1. While condition

:

Repetition Structure
(cont..)

do-while Loop
(post-test loop)

FALSE

TRUE

• Do the statement (body of loop) while a condition is true.

• The loop body is executed at least once.

statement

condition

 statement

Example

1. Start

2. Set sum = 0, counter = 0

3. do

3.1 sum = sum + counter

3.2 counter = counter + 1

4. while (counter < 10)

5. Display sum

6. End

Flow Chart

Start

sum = 0, counter = 0

counter < 10

sum = sum + counter

End

print sum

counter = counter + 1

false

true

In-Class Exercise 1

• Develop an algorithm (pseudo code) and flow
chart for a program to calculate an average of
15 numbers input by the user. Use pre-test
loop

• Modify your solution above by using the post-
test loop.

In-Class Exercise 2

• Develop an algorithm and flow chart to print
even numbers between 1 to 50. Use pre-test
loop.

• Modify your solution by using post-test loop.

Repetition Structure -
Letting the User Control a Loop

• Program can be written so that user input determines loop
repetition.

• Used when program processes a list of items, and user
knows the number of items

• User is prompted before loop. Their input is used to control
number of repetitions

Repetition Structure (cont..)

cnt = 0

cnt < limit

cnt = cnt + 1

FALSE

TRUE

Start

Print “Radziah”

End

Get limit

Repetition Structure -
Sentinels

• sentinel: value in a list of values that indicates end of data

• Special value that cannot be confused with a valid value, e.g.,
-999 for a test score

• Used to terminate input when user may not know how many
values will be entered

Repetition Structure -
Sentinels

Algorithm: Loop control by sentinel value

1. Start

2. Set repeat = 1

3. while (repeat == 1)

3.1 Read no1

3.2 Read no2

3.4 Print no1 + no2

3.5 Read repeat

4. end_while

5. End

In-Class Exercise 1

Trace the following pseudo code:

1. Start

2. Set product = 1, number = 1, count = 20

3. Calculate: lastNumber = 2 * count – 1

4. while (number <= lastNumber)

4.1 product = product * number

4.2 number = number + 2

5. end_while

6. Display product

In-Class Exercise 2

• Convert the pseudo code in In-Class Exercise 1
to its flow chart.

• Convert the while loop in In-Class Exercise 1 to
do..while loop. Draw its respective flow chart.

In-Class Exercise 3

• Bina Education Sdn. Bhd. wants you to develop a
program for finding experience teachers for its offered
course. Your program will request name and number of
years teaching from the applicants. To be accepted as the
teacher, the applicant must have at least 8 years of
teaching experience. Your program will display list of
successful applicants’ names, numbers of successful
applicants and average of numbers of years of teaching
experience of successful applicants. Your program will
terminate when the name input is “OK”.

Modular Flowcharting

Page 1

result = AVRG (n1,
n2, n3)

Start

Stop

Read
n1, n2 , n3

Print
result

Page 2

AVRG (n1, n2,n3)

Return result

sum = n1+
n2+n3

result = sum/3

End terminal

must be a “Return”.

“result” is the output

Start terminal for a

Function is different.

The detail of how the function works

is put in another flowchart.

This is known as Function-Definition

At this point,

we only focus on what

to do. How to do it,

it comes later.

This part is known as

Function-Call

Body of a function is

the same with

main flowchart

Flowchart AVRG calculates the average of three numbers

Problem: To average three numbers

Function

Page 1

(S,A)= AVRGSUM
(X,Y,Z)

Start

Stop

Read
X, Y , Z

Print
S,A

Page 2

AVRGSUM (n1,
n2,n3)

Return sum, average

sum = n1+
n2+n3

average = sum/3

The function returns

two output, “sum” and

“average”

Input: n1,n2 and n3

Output: S and A

Flowchart AVRGSUM calculates the total

and average of three numbers

Problem: To sum and average three numbers

Page 1

result = AVRG
(n1,n2,n3)

Start

Stop

Read
n1, n2 , n3

Print
result

Page 2

AVRG (a,b,c)

Return R

sum = a+b+c

R = sum/3

AVRG is the function name

Objects enclosed by () – result,

n1, n2, n3 - are called parameters

Parameters used in a function-call

are called actual parameters

result, n1, n2, n3 are actual parameters

Parameters used in a function-definition

are called formal parameters

a, b, c are formal parameters

Each formal parameter represents

an actual parameter according

to its order:

a represents n1,

b represents n2,

c represents n3

The name of an actual parameter may be

different from its formal parameter

Flowchart AVRG calculates the average of three numbers

Actual and Formal Parameters

Related Terms and Concepts

Page 1

result = AVRG (n1,
n2,n3)

Start

Stop

Read
n1, n2 , n3

Print

R

Page 2

AVRG (a,b,c)

Return R

sum = n1 + n2

+ n3

R = sum/3

In a function-definition, you should only

use formal parameters : a, b, c

You shouldn’t use actual parameters

Wrong!

n1, n2, n3

can only be

referred to

in the main

flowchart.

Wrong!

R can only be

referred to

in flowchart

AVRG.

Only refer to variables that exist in the

current chart

Page 1

average1 = AVRG (n1,
 n2, n3)

Start

Stop

Read
n1, n2 , n3

Print
result

Read
n4, n5 , n6

average2 = AVRG (n4,
 n5, n6)

result = (average1 +
average2) / 2

Page 2

AVRG (a, b,c)

Return R

sum = a+ b+c

R = sum/3

A function may be

called several times

At this time:

a represents n1,

b represents n2,

c represents n3

Now:

a represents n4,

b represents n5,

c represents n6

A function may be called several times

Page 1 Page 2

EXCHG(x, y)

Return

hold = x

x = y

y = hold

Start

Stop

Print

p, q

EXCHG (p, q)

Read

p, q

Function call:

p and q act as both input and output

parameters.

Function definition:

x and y act as both input and output

parameters

Flowchart EXCHG exchanges or swaps the value

of x and y each other

An input parameter may also be an output

Page 1

average = AVRG (10, 5, N)

Start

Stop

Read
N

Print
average

Page 2

AVRG (n1, n2, n3)

Return Result

sum = n1+ n2+n3

result = sum/3

Example:
What is the output of the following flowchart when the input N = 6

average

10

5

N=6

Sum = 10 + 5 + 6

average =

21/3

Output:

Average: 7

What you have learnt so far ….

•Design:

- Developing algorithm

- Understanding how a flowchart works

- Constructing flowcharts

•Analysis:

-Understanding the problem

The next step is implementation (coding)

Coding is a process of converting flowchart

to programming code

Before you can start doing this, you should learn

some basics including the language itself

Writing a C++ Program is a systematic task

Problem

Flowchart

Intermediate code
-prepare a rough code-

Complete code
- add details -

The conversion process is straight forward

Example: multiplying two numbers

Start

Stop

Read A
Read B

Display the
Result C

Calculate Result
C = A * B

void main ()

{

cin >> A;

cin >> B;

C = A * B;

cout << C;

}

Intermediate C++ code

However, the program is still unable to run

It is not complete yet. We refer this code is as

an intermediate code.

You will get these errors

Error 1: Undefined symbol ‘cin’
The compiler doesn’t recognize the ‘cin’

Error 2: Undefined symbol ‘A’
The program is trying to use a variable A but has

never been registered. Compiler doesn’t

recognize the variable

Fixing the errors and completing the program

This line will help the compiler to recognize
symbols ‘cin’ and ‘cout’. File

iostream.h contains the information of

those symbols and some others.

This tells to register (declare) variables.

Compiler only recognizes registered

variables.

You may notice some extra things.

These are called prompts. They used to let

the user knows what is going on while

the program is running

Example

Problem: Finding the average of three numbers

Flowcharts:

Start

Stop

Read
n1, n2 , n3

avrg = Average(n1, n2, n3)

Print

avrg

Average(a, b, c)

Return result

sum = a + b + c

result = sum / 3

Start

Stop

Read
n1, n2 , n3

avrg = Average(n1, n2, n3)

Print

avrg

void main ()

{

cin >>n1;

cin >>n2;

cin >>n2;

avrg = Average(n1, n2, n3);

cout << avrg;

}

Intermediate code of the main flowchart
Preparing the rough code

Average(a, b, c)

Return result

sum = a + b + c

result = sum / 3

Average(a, b, c)

{

sum = a + b + c;

result = sum / 3.0;

return result;

}

Intermediate code of the function flowchart
Preparing the rough code

#include <iostream>

Using namespace std;

float Average(int a, int b, int c)

{ float sum;

sum = a + b + c;

result = sum/3.0;

return result;

}

int main ()

{

int n1;

int n2;

int n3;

float avrg;

cout <<"Enter three numbers: ";

cin >> n1;

cin >> n2;

cin >> n3;

avrg = Average(n1,n2,n3);

cout << "The average is " << avrg;

return 0;

}

The complete code
Adding details to the rough code. The details are shown by

bold texts

