

SCSI1013: Discrete Structures

CHAPTER 1

SET THEORY

[Part 1: Set & Subset]

Introduction

- Why are we studying sets
 - The concept of set is basic to all of mathematics and mathematical applications.
 - Serves as a basis of description of higher concept and mathematical reasoning
 - Set is fundamental in many areas of Computer Science.
 - For us, sets are useful to understand the principles of counting and probability theory

- The concept of set is basic to all of mathematics and mathematical applications.
- A set is a well-defined collection of distinct objects.
- These objects are called members or elements of the set.

- Well-defined means that we can tell for certain whether an object is a member of the collection or not.
- If a set is finite and not too large, we can describe it by listing the elements in it.

- A is a set of all positive integers less than 10,
 A={1, 2, 3, 4, 5, 6, 7, 8, 9}
- B is a set of first 5 positive odd integers,
 B={1, 3, 5, 7, 9}
- C is a set of vowels, $C=\{a_i, e_i, o_i, u\}$

Defining Sets

- This can be done by:
 - Listing ALL elements of the set within braces.
 - Listing enough elements to show the pattern then an ellipsis.
 - Use set builder notation to define "rules" for determining membership in the set.

- 1. Listing ALL elements. $A = \{1, 2, 3, 4\}$ explicitly
- 2. Demonstrating a pattern. $\mathbb{N} = \{1, 2, 3, ...\}$ implicitly
- 3. Using set builder notation. $P = \{x \mid x \in \mathbb{R} \text{ and } x \notin \mathbb{C}\}$ implicitly

- A set is determined by its elements and not by any particular order in which the element might be listed.
- Example,

$$A=\{1, 2, 3, 4\},\$$

A might just as well be specified as

 The elements making up a set are assumed to be distinct, we may have duplicates in our list, only one occurrence of each element is in the set.

Example

$$\{a, b, c, a, c\} \longrightarrow \{a, b, c\}$$

$$\{1, 3, 3, 5, 1\} \longrightarrow \{1, 3, 5\}$$

- Use uppercase letters A, B, C ... to denote sets, lowercase denote the elements of set.
- The symbol ∈ stands for 'belongs to'

• $X=\{a,b,c,d,e\}, b\in X \text{ and } m\notin X$

• $A=\{\{1\}, \{2\}, 3, 4\}, \{2\}\in A \text{ and } 1\notin A$

 If a set is a large finite set or an infinite set, we can describe it by listing a property necessary for memberships

Let S be a set, the notation,

$$A = \{x \mid x \in S, P(x)\} \text{ or } A = \{x \in S \mid P(x)\}$$

means that A is the set of all elements x of S such that x satisfies the property P.

Let A={1, 2, 3, 4, 5, 6}, we can also write A as,

$$A = \{x \mid x \in Z, \ 0 < x < 7\}$$

if Z denotes the set of integers.

• Let $B=\{x \mid x \in Z, x>0\}, B=\{1, 2, 3, 4, ...\}$


```
The set of natural numbers: \mathbb{N} = \{1, 2, 3, ...\}
The set of integers: \mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}
The set of positive integers: \mathbb{Z}^+ = \{1, 2, 3, ...\}
```

The set of Rational Numbers (fractions): $\frac{1}{2}$, $\frac{2}{3}$, $\frac{5}{7}$, etc $\in \mathbb{Q}$

More formally:
$$\mathbb{Q} = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{R}, b \neq 0 \right\}$$

The set of Irrational Numbers: $\sqrt{2}$, π , or e are irrational

The Real numbers $= \mathbb{R} =$ the union of the rational numbers with the irrational numbers

Some Symbols Used With Set Builder Notation

```
The standard form of notation for this is called "set builder notation".
                     \{x \mid x \text{ is an odd positive integer}\}\ represents the set \{1, 3, 5, 7, 9, \ldots\}
       \{x \mid x \text{ is an odd positive integer}\} is read as
       "the set consisting of all x such that x is an odd positive integer".
      The vertical bar, " ", stands for "such that"
                        Other "short-hand" notation used in working with sets
                                                               "3" stands for "there exists"
          "∀" stands for "for every"
          "U" stands for "union"
                                                               "\" stands for "intersection"
         "⊆" stands for "is a subset of"
                                                               "

" stands for "is a (proper) subset of"
          "Ø" stands for the "empty set"
         "

e" stands for "is an element of"
                                                               "∉" stands for "is not an element of"
          "x" stands for "cartesian cross product"
                                                              "=" stands for "is equal to"
```


Subset

• If every element of A is an element of B, we say that A is a subset of B and write $A \subseteq B$.

$$A=B$$
, if $A \subset B$ and $B \subset A$

The empty set (∅) is a subset of every set.

$$A=\{1, 2, 3\}$$

Subset of A, \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$, $\{1, 2, 3\}$

Note:

A is a subset of A

Exercise

Answer true or false

a)
$$\{x\} \subseteq \{x\}$$

b)
$$\{x\} \in \{x\}$$

c)
$$\{x\} \in \{x, \{x\}\}$$

d)
$$\{x\} \subseteq \{x, \{x\}\}$$

Proper Subsets

If A⊆B and B contains an element that is not in A, then we say "A is a **proper subset** of B": A⊂B or B⊃A.

Formally: $A \subseteq B$ means $\forall x [x \in A \rightarrow x \in B]$.

For all sets: A⊆A.

Note: If A is a subset of B and A does not equal B, we say that A is a proper subset of B $(A \subseteq B \text{ and } A \neq B (B \not\subseteq A))$

• $A=\{1, 2, 3\}$

Proper subset of A,

$$\emptyset$$
, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

Note:

A proper subset of a set A is a <u>subset</u> of A that is not equal to $A (\{1,2,3\} \not\subset A)$

Let a set, $B=\{1, 2, 3, 4, 5, 6\}$ and the subset, $A = \{1, 2, 3\}$.

 \Rightarrow A is proper subset of B.

Proper subset of A ?? B and C

Empty Sets

The **empty set** \varnothing or {} but not { \varnothing } is the set without elements.

Note:

- Empty set has no elements
- Empty set is a subset of any set
- · There is exactly one empty set
- Properties of empty set:

$$A \cup \emptyset = A, A \cap \emptyset = \emptyset$$

 $A \cap A' = \emptyset, A \cup A' = U$
 $U' = \emptyset, \emptyset' = U$

$$\emptyset = \{x \mid x \text{ is a real number and } x^2 = -3\}$$

$$\emptyset = \{x \mid x \text{ is positive integer and } x^3 < 0\}$$

Equal Sets

The sets A and B are **equal** (A=B) if and only if each element of A is an element of B and vice versa.

Formally: A=B means $\forall x [x \in A \leftrightarrow x \in B]$.

$$A=\{a, b, c\}, B=\{b, c, a\}, A=B$$

$$C=\{1, 2, 3, 4\}$$

 $D=\{x \mid x \text{ is a positive integer and } 2x < 10\},$
 $C=D$

Exercise

Determine whether each pair of sets is equal

- a) {1, 2, 2, 3}, {1, 3, 2}
- b) $\{x \mid x^2 + x = 2\}, \{1, -2\}$
- c) $\{x \mid x \text{ is a real number and } 0 < x \le 2\}, \{1,2\}$

Equivalent Sets

Two sets, A and B, are equivalent if there exists a one-to-one correspondence between them.

When we say sets "have the same size", we mean that they are equivalent.

Set A: {A, B, C, D, E} and **Set** B: {1, 2, 3, 4, 5}

Note:

- An equivalent set is simply a set with an equal number of elements.
- The sets do not have to have the same exact elements, just the same number of elements.

Finite Sets

A set A is finite

if it is empty

or

if there is a natural number *n* such that set A is equivalent to

 $\{1, 2, 3, \ldots n\}.$

$$A = \{1, 2, 3, 4\}$$

 $B = \{x \mid x \text{ is an integer, } 1 \le x \le 4\}$

Note:

There exists a nonnegative integer n such that A has n elements (A is called a finite set with n elements)

Infinite Sets

A set A is infinite

if there is **NOT** a natural number *n* such that set *A* is equivalent to {1, 2, 3, . . . *n*}.

Infinite sets are uncountable.

Are all infinite sets equivalent?

A set is infinite if it is equivalent to a proper subset of itself!

$$Z = \{x \mid x \text{ is an integer}\}\$$

or $Z = \{..., -3, -2, -1, 0, 1, 2, 3,...\}$

 $S=\{x \mid x \text{ is a real number and } 1 \le x \le 4\}$

$$C = \{5, 6, 7, 8, 9, 10\}$$
 (finite set)

$$B = \{x \mid x \text{ is an integer, } 10 < x < 20\}$$
 (finite set)

$$D = \{x \mid x \text{ is an integer, } x > 0\}$$
 (infinite set)

Universal Set

- Sometimes we are dealing with sets all of which are subsets of a set *U*.
- This set *U* is called a universal set or a universe.
- The set *U* must be explicitly given or inferred from the context.

Universal Set

Typically we consider a set A a part of a **universal set** \mathcal{U} , which consists of all possible elements. To be entirely correct we should say $\forall x \in \mathcal{U} [x \in A \leftrightarrow x \in B]$ instead of $\forall x [x \in A \leftrightarrow x \in B]$ for A=B.

Note that $\{x \mid 0 < x < 5\}$ is can be ambiguous. Compare $\{x \mid 0 < x < 5, x \in N\}$ with $\{x \mid 0 < x < 5, x \in Q\}$

• The sets $A=\{1,2,3\}$, $B=\{2,4,6,8\}$ and $C=\{5,7\}$

One may choose *U*={1,2,3,4,5,6,7,8} as a universal set.

 Any superset of *U* can also be considered a universal set for these sets *A*, *B*, and *C*.

For example, $U=\{x \mid x \text{ is a positive integer}\}$

Cardinality of Set

- Let S be a finite set with n distinct elements, where n≥0.
- Then we write |S| = n and say that the cardinality (or the number of elements) of S is n.

Example

$$A = \{1, 2, 3\}, |A| = 3$$

 $B = \{a, b, c, d, e, f, g\}, |B| = 7$

Exercise

If M is finite, determine the | M |

$$- \text{ If } M = \{1, 2, 3, 4\}$$

$$- \text{ If } M = \{4, 4, 4\}$$

- If
$$M = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$$

Power Set

The set of all subsets of a set A, denoted
 P(A), is called the power set of A.

$$P(A) = \{X \mid X \subseteq A\}$$

• If |A| = n, then $|P(A)| = 2^n$

• $A=\{1,2,3\}$

• The power set of A, $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

• Notice that |A| = 3, and $|P(A)| = 2^3 = 8$

Exercise

- Let *X*= {1, 2, 2, {1}, *a*}
- Find:
 - |X|
 - Proper subset of X
 - Power set of X

Exercise

• List the member of $P(\{a, b, c, d\})$. Which are proper subset of $\{a, b, c, d\}$?

Summary

How to Think of Sets

The elements of a set do not have an ordering, hence $\{a,b,c\} = \{b,c,a\}$

The elements of a set do not have multitudes, hence $\{a,a,a\} = \{a,a\} = \{a\}$

All that matters is: "Is x an element of A or not?"

The size of A is thus the number of *different* elements

