starting out with >>>

Chapter 7: -

NINTH EDITION

Arrays and Vectors

TONY GADDIS

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

7.1

Arrays Hold Multiple Values

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Arrays Hold Multiple Values

» Array: variable that can store multiple
values of the same type

»Values are stored in adjacent memory
locations

» Declared using [] operator:
int tests[5];

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Array - Memory Layout

» The definition:
int tests[5];

allocates the following memory:

I T R

first second third fourth fifth
element element element element element

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Array Terminology

In the definition int tests[5];
» int Is the data type of the array elements
» tests is the name of the array

»5, In [5], Is the size declarator. It shows
the number of elements in the array.

» The size of an array is (number of
elements) * (size of each element)

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Array Terminology

» The size of an array Is:
*the total number of bytes allocated for it

» (number of elements) * (number of bytes for
each element)

» Examples:

int tests[5] is an array of 20 bytes,
assuming 4 bytes for an int

long double measures[10]is an array of
80 bytes, assuming 8 bytes for a 1ong double

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Size Declarators

» Named constants are commonly used as
size declarators.

const int SIZE = 5;
int tests[SIZE];

» This eases program maintenance when
the size of the array needs to be changed.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

[.2

Accessing Array Elements

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Accessing Array Elements

»Each element in an array is assigned a
unique subscript.

» Subscripts start at O

subscripts:
0 1 2 3 4

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Accessing Array Elements

» The last element’s subscript is n-1 where n
Is the number of elements in the array.

subscripts:
0 1 2 3 4

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Accessing Array Elements

2 Array elements can be used as regular variables:
tests[0] = 79;
cout << tests[0];
cin >> tests[1l];
tests[4] = tests[0] + tests|[1l];

2 Arrays must be accessed via individual
elements:

cout << tests; // not legal

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Accessing Array Elements in Program 7-1

Program 7-1

1 // This program asks for the number of hours worked

2 // by six employees. It stores the values in an array.
J #include <iostream>

4 using namespace std;

6 int main()

7 A

8 const int NUM EMPLOYEES = 6;

9 int hours[NUM_ EMPLOYEES];

10

11 // Get the hours worked by each employee.
12 cout << "Enter the hours worked by "

13 << NUM_EMPLOYEES << " employees: ";
14 cin >> hours[0];

15 cin >> hours|[1l];

16 cin >> hours|[2];

17 cin >> hours[3];

18 cin >> hours[4];

19 cin >> hours[5];

20

(Program Continues)

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Accessing Array Elements in Program 7-1

// Display the values in the array.
cout << "The hours you entered are:";

cout << " " << hours[0];

cout << " " << hours[1l];

cout << " " << hours|[2];

cout << " " << hours[3];

cout << " " << hours[4];

cout << " " << hours[5] << endl;
return 0;

}

Program Output with Example Input Shown in Bold

Enter the hours worked by 6 employees: 20 12 40 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

Here are the contents of the hours array, with the values
entered by the user in the example output:

hours([0] hours[1l] hours[2] hours([3] hours([4] hours([5]

20 12 40 30 30 15

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Accessing Array Contents

2 Can access element with a constant or
literal subscript:
cout << tests[3] << endl;

» Can use integer expression as subscript:

int 1 = 5;
cout << tests[i1] << endl;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using a Loop to Step Through

an Array

@ Example — The following code defines an
array, numbers, and assigns 99 to each

element:

const 1int ARRAY_SIZE = 5;
int numbers [ARRAY SIZE];

for (int count = 0; count < ARRAY SIZE; count++)
numbers [count] = 99;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Closer Look At the Loop

The loop ends when the
The variable count starts at 0, variable count reaches 5, which
which is the first valid subscript value. is the first invalid subscript value.

\ /

for (count = 0; count < ARRAY SIZE; count++)
numbers[count] = 99; T

The variable count is
incremented after
each iteration.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Default Initialization

» Global array - all elements initialized to 0
by default

*Local array = all elements uninitialized by
default

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Array Initialization

» Arrays can be Iinitialized with an
initialization list:

const i1nt SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

The values are stored in the array in the order
In which they appear in the list.

» The initialization list cannot exceed the array
size.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Code From Program 7-3

7 const int MONTHS = 12;
8 int days[MONTHS { 31, 28, 31, 30,
9 31, 30, 21, 31,

10 30, 31, 20, 31}%;

11

12 for (int count = 0; count < MONTHS; count++)
13 {

14 cout << "Month " << (count + 1) << " has ";
15 cout << days[count] << " days.\n";

16 }

Program Output

Month 1 has 21 days.

Month 2 has 28 days.
Month 3 has 21 days.
Month 4 has 30 days.
Month 5 has 21 days.
Month 6 has 20 days.
Month 7 has 21 days.
Month 8 has 21 days.

Month 9 has 320 days.

Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Partial Array Initialization

@ If array is initialized with fewer initial
values than the size declarator, the
remaining elements will be setto 0:

int numbers([7] = {1, 2, 4, 8};

]
Uninitialized Elements

1 2 4 8 0 0 0

numbers numbers numbers numbers numbers numbers numbers

[O] [1] [2] (3] [4] [5] (6]

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Implicit Array Sizing

» Can determine array size by the size of
the initialization list:

int quizzes[]={12,17,15,11};

12

17

15

11

» Must use either array size declarator or

initialization list at array definition

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

7.3

No Bounds Checking in C++

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

No Bounds Checking in C++

*When you use a value as an array

subscript, C++ does not check it to make
sure it is a valid subscript.

»In other words, you can use subscripts
that are beyond the bounds of the array.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Code From Program 7-9

@ The following code defines a three-element
array, and then writes five values to it!

9 const int SIZE = 3; // Constant for the array size
10 int values[SIZE]; /'l An array of 3 integers
11 int count; /| Loop counter variable
12
13 /| Attempt to store five numbers in the 3-element array.
14 cout << "I will store 5 numbers in a 3-element array!\n";
15 for (count = 0; count < 5; count++)
16 values|[count] = 100;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

What the Code Does

The way the values array is set up in memory.
The outlined area represents the array.

Memory outside the array Memory outside the array
(Each block = 4 bytes) (Each block = 4 bytes)

values[0] values[1l] values([2]

How the numbers assigned to the array overflow the array's boundaries.
The shaded area is the section of memory illegally written to.

Anything previously stored
here is overwritten.

00 o] w0 e

values[0] values[1l] values([2] values[3] values([4]

(Does not exist) (Does not exist)
@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

No Bounds Checking in C++

» Be careful not to use invalid subscripts.

» Doing so can corrupt other memory
locations, crash program, or lock up
computer, and cause elusive bugs.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Off-By-One Errors

» An off-by-one error happens when you use
array subscripts that are off by one.

» This can happen when you start subscripts
at 1 rather than O:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)
numbers|[count] = 0;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

7.4

The Range-Based for Loop

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Range-Based for Loop

C++ 11 provides a specialized version of the for loop
that, in many circumstances, simplifies array

processing.

The range-based for loop is a loop that iterates once for
each element in an array.

Each time the loop iterates, it copies an element from the
array to a built-in variable, known as the range variable.
The range-based for loop automatically knows the
number of elements in an array.

You do not have to use a counter variable.

You do not have to worry about stepping outside the bounds of

the array.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Range-Based for Loop

Here is the general format of the range-based for loop:

for (dataType rangeVariable : array)
statement,

dataType is the data type of the range variable.

rangeVariable is the name of the range variable. This variable
will receive the value of a different array element during each
loop iteration.

array is the name of an array on which you wish the loop to
operate.

statement is a statement that executes during a loop iteration. If

you need to execute more than one statement in the loop, enclose
the statements in a set of braces.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The range-based for loop in Program 7-10

1 /] This program demonstrates the range-based for Tloop.
2 #include <iostream>

3 using namespace std;

4

5 1int main()

6 |

7 /| Define an array of integers.

8 int numbers[] = { 10, 20, 30, 40, 50 };
9
10 /| Display the values in the array.

11 for (int val : numbers)

12 cout << val << endl;

13

14 return 0O;

15 }

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Modifying an Array with a Range-
Based for Loop

» As the range-based for loop executes, its
range variable contains only a copy of an array
element.

» You cannot use a range-based for loop to
modify the contents of an array unless you
declare the range variable as a reference.

» To declare the range variable as a reference
variable, simply write an ampersand (&) in front
of its name in the loop header.

» Program 7-12 demonstrates

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Modifying an Array with a Range-
Based for Loop in Program 7-12

const int SIZE = 5;
int numbers[5];

// Get values for the array.

for (int &val : numbers)

{
cout << "Enter an integer value: ";
cin >> val;

}

// Display the values in the array.
cout << "Here are the values you entered:\n";
for (int val : numbers)

cout << val << endl;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Modifying an Array with a
Range-Based for Loop

You can use the auto key word with a reference range variable. For
example, the code in lines 12 through 16 in Program 7-12 could have
been written like this:

for (auto &val : numbers)

{

cout << "Enter an integer value: ";
cin >> wval;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Range-Based for Loop
versus the Regular for Loop

2 The range-based for loop can be used in
any situation where you need to step
through the elements of an array, and you
do not need to use the element subscripts.

2 1f you need the element subscript for some
purpose, use the reqgular for loop.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

7.9

Processing Array Contents

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Processing Array Contents

» Array elements can be treated as ordinary
variables of the same type as the array

»When using ++, - - operators, don’t
confuse the element with the subscript:

tests[1]++; // add 1 to tests[i]
tests[i++]; // increment i, no

// effect on tests

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Array Assignment

To copy one array to another,

»Don’t try to assign one array to the other:
tests; // Won't work

newlTests

* Instead, assign element-by-element:
for (i = 0; i < ARRAY SIZE; i++)

newTests[1] = tests[1];

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Printing the Contents of an
Array

»You can display the contents of a
character array by sending its name to
cout:

char fName|[] = "Henry";
cout << fName << endl;

But, this ONLY works with character arrays!

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Printing the Contents of an
Array

@ For other types of arrays, you must print
element-by-element:

for (1 = 0; 1 < ARRAY_SIZE; 1++)
cout << tests[1] << endl;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Printing the Contents of an
Array

21n C++ 11 you can use the range-based
for loop to display an array's contents, as

shown here:

for (int val : numbers)
cout << val << endl;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Summing and Averaging
Array Elements

@ Use a simple loop to add together array
elements:
int tnum;
double average, sum = 0;
for(tnum = 0; tnum < SIZE; tnum++)
sum += tests|[tnum];

2 0Once summed, can compute average.:
average = sum / SIZE;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Summing and Averaging
Array Elements

@In C++ 11 you can use the range-based
for loop, as shown here:

double total = 0; // Initialize accumulator
double average; // Will hold the average
for (int val : scores)

total += val;
average = total / NUM SCORES;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Finding the Highest Value in an
Array

int count;

int highest;

highest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] > highest)
highest = numbers[count];

When this code is finished, the highest variable will contains the highest value
in the numbers array.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Finding the Lowest Value in an
Array

int count;

int lowest;

lowest = numbers[O0];

for (count = 1; count < SIZE; count++)

{

if (numbers[count] < lowest)
lowest = numbers|[count];

When this code is finished, the 1owest variable will contains the lowest value in
the numbers array.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Partially-Filled Arrays

»If it 1Is unknown how much data an
array will be holding:

*Make the array large enough to hold the
largest expected number of elements.

*Use a counter variable to keep track of
the number of items stored in the array.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Comparing Arrays

2 To compare two arrays, you must compare
element-by-element:

const int SIZE = 5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable

// Compare the two arrays.
while (arraysEqual && count < SIZE)
{

if (firstArray[count] != secondArray[count])
arrayskEqual = false;
count++;

}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

) From Coatrol Structures

7.6

Using Parallel Arrays

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using Parallel Arrays

» Parallel arrays: two or more arrays that
contain related data

» A subscript is used to relate arrays:
elements at same subscript are related

» Arrays may be of different types

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Parallel Array Example

const int SIZE = 5; // Array size

int 1d[SIZE]; // student ID
double average[SIZE]; // course average
char grade[SIZE]; // course grade

for(int 1 = 0; 1 < SIZE; i++)
{

cout << "Student ID: " << 1d[1]
<< " average: " << average[i]
<< " grade: " << gradel[i]
<< endl;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Parallel Arrays in Program 7-15

Program 7-15

1 // This program uses two parallel arrays: one for hours

2 |l worked and one for pay rate.

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 int main()

8

9 const int NUM_EMPLOYEES = 5; /'l Number of employees
10 int hours[NUM_EMPLOYEES]; // Holds hours worked
11 double payRate[NUM_EMPLOYEES]; // Holds pay rates

12
13 /1 Input the hours worked and the hourly pay rate.
14 cout << "Enter the hours worked by " << NUM_EMPLOYEES
15 << " employees and their\n"
16 << "hourly pay rates.\n";
17 for (int index = 0; index < NUM_EMPLOYEES; index++)
18 {
19 cout << "Hours worked by employee #" << (index+1) << ": ";
20 cin >> hours[index];
21 cout << "Hourly pay rate for employee #" << (index+1) << ": ";
22 cin >> payRate[index];
23 }
24

(Program Continues)

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Parallel Arrays in Program 7-15

25 /1 Display each employee's gross pay.

26 cout << "Here 1is the gross pay for each employee:\n";
27 cout << fixed << showpoint << setprecision(2);

28 for (int index = 0; index < NUM_EMPLOYEES; index++)
29 {

30 double grossPay = hours[index] * payRate[index];
31 cout << "Employee #" << (index + 1);

32 cout << ": $" << grossPay << endl;

33 }

34 return O;

35 1}

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees and their
hourly pay rates.

Hours worked by employee #1: 10 (Enter)
Hourly pay rate for employee #1: 9.75 (Enter)
Hours worked by employee #2: 15 [Enter]
Hourly pay rate for employee #2: 8.62 (Enter)
Hours worked by employee #3: 20 (Enter]
Hourly pay rate for employee #3: 10.50 (Enter)
Hours worked by employee #4: 40 (Enter)
Hourly pay rate for employee #4: 18.75 (Enter)
Hours worked by employee #5: 40 (Enter)
Hourly pay rate for employee #5: 15.65 (Enter)
Here is the gross pay for each employee:
Employee #1: $97.50

Employee #2: $129.30

Employee #3: $210.00

Employee #4: $750.00

Employee #5: $626.00

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Parallel Arrays in Program 7-15

The hours and payRate arrays are related through their subscripts:

10 15 20 40 40

hours [0] hours [1] hours [2] hours [3] hours [4]

oot

Employee Employee Employee Employee Employee

#1 #2 #3 #4 #5
9.75 8.62 10.50 18.75 15.65

payRate [0] payRate [1l] payRate [2] payRate [3] payRate [4]

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

[./

Arrays as Function Arguments

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Arrays as Function Arguments

» To pass an array to a function, just use the array
name:

showScores (tests) ;

» To define a function that takes an array

parameter, use empty [] for array argument:

// function prototype
volid showScores (int []);

// function header
volid showScores (int tests|[])

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Arrays as Function Arguments

When passing an array to a function, it is common
to pass array size so that function knows how many
elements to process:

showScores (tests, ARRAY SIZE);

» Array size must also be reflected in prototype,

header:

// function prototype
vold showScores (int [], 1int);

// function header
vold showScores (int tests[], 1nt size)

7-56
@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Passing an Array to a Function in Program 7-17

Program 7-17

1 /! This program demonstrates an array being passed to a function.
2 #include <iostream>

3 using namespace std;

4

5 wvoid showValues(int [], int); // Function prototype

6

7 int main()

8 {

9 const int ARRAY_SIZE = 8;
10 int numbers[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
11
12 showValues (numbers, ARRAY_SIZE);
13 return 0;
14}
15
16 //***

17 I/ Definition of function showValue. *

18 // This function accepts an array of integers and
19 // the array's size as its arguments. The contents *
20 /Il of the array are displayed. *

*

21 //***
22

23 void showValues(int nums[], int size)

24 {

25 for (int index = 0; index < size; index++)

26 cout << nums[index] << " ";

27 cout << endl;

28 }

Program Output
5 10 15 20 25 30 35 40

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Modifying Arrays in Functions

» Array names in functions are like
reference variables — changes made to

array in a function are reflected in actual
array in calling function

»Need to exercise caution that array is not
inadvertently changed by a function

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

y From Coatrol Structures

7.8

Two-Dimensional Arrays

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Two-Dimensional Arrays

» Can define one array for multiple sets of
data

»Like a table in a spreadsheet
» Use two size declarators in definition:

const int ROWS = 4, COLS = 3;
int exams[ROWS] [COLS] ;

» First declarator is number of rows;
second is number of columns

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Two-Dimensional Array
Representation

const 1nt ROWS = 4, int

exams [ROWS] [COLS] ;

COLS = 3;

exams|[0] [O]

exams|[0] [1]

exams|[0] [2]

exams|[1][0]

exams[1l][1]

exams|[1][2]

exams[2] [0]

exams[2][1]

exams|[2] [2]

exams|[3] [0]

exams[3] [1]

exams|[3] [2]

@ Use two subscripts to access element:
exams[2] [2] = 86;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Two-dimensional Array in Program 7-21

Program 7-21

wn

et Pt pd Pt fd i et

// This program demonstrates a two-dimensional array.
¢include <iostream>

¢include <iomanip>

using namespace std;

int main()

{
const int NUM DIVS = 3; // Number of divisions
const int NUM_QTRS = 4; // Number of quarters
double sales[NUM_DIVS][NUM _QTRS); // Array with 3 rows and 4 columns.
double totalSales = 0; // To hold the total sales.
int div, qtr; // Loop counters.

cout << "This program will calculate the total sales of\n";
cout << "all the company's divisions.\n";
cout << "Enter the following sales information:\n\n";

(program continues)

Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Two-dimensional Array in Program 7-21

Program 7-21 (continued)

1€ // Nested loops to fill the array with quarterly
19 // sales figures for each division.
for (div = 0; div < NUM_DIVS; div++)

{
for (qtr = 0; gqtr < NUM_QTRS; qtr++)
{
24 cout << "Division " << (div + 1);
- cout << ", Quarter " << (qtr + 1) << ": §";
2¢ cin >> sales([div][qtr];
27 }
) cout << endl; // Print blank line.
}

31 // Nested loops used to add all the elements.
‘ for (div = 0; div < NUM_DIVS; div++)
- {
34 for (qtr = 0; gtr < NUM_QTRS; qtr++)
) § totalSales += sales[div][qtr];
}

cout << fixed << showpoint << setprecision(2);
cout << "The total sales for the company are: §";
cout << totalSales << endl;

41 return 0;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Two-dimensional Array in Program 7-21

Program Output with Example Input Shown in Bold
This program will calculate the total sales of

all the company's divisions.
Enter the following

sales data:

Division 1, Quarter l: $31569.45 [Enter]
Division 1, Quarter 2: $29654.23 [Enter]
Division 1, Quarter 3: $32982.54 [Enter]
Division 1, Quarter 4: $39651.21 [Enter]
Division 2, Quarter l: $56321.02 [Enter]
Division 2, Quarter 2: $54128.63 [Enter]
Division 2, Quarter 3: $41235.85 [Enter]
Division 2, Quarter 4: $54652.33 [Enter]
Division 3, Quarter l: $29654.35 [Enter]
Division 3, Quarter 2: $28963.32 [Enter]
Division 3, Quarter 3: $25353.55 [Enter]
Division 3, Quarter 4: $32615.88 [Enter]

The total sales for

the company are:

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5456782 .34

2D Array Initialization

Two-dimensional arrays are initialized row-by-row:
const int ROWS = 2, COLS = 2;
int exams[ROWS] [COLS] = { {84, 78},

{92, 97} };

84 |78

92 | 97

Can omitinner { }, some initial values in a row —
array elements without initial values will be set to 0
or NULL

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Two-Dimensional Array as
Parameter, Argument

@ Use array name as argument in function call:

getExams (exams, 2);

,,,,,,

prototype, header:
const 1nt COLS = 2;

// Prototype
vold getExams (int [] [COLS], 1int);

// Header
vold getExams (1nt exams|[] [COLS], 1nt rows)

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Example — The showArray
Function from Program 7-22

30 //*'k******'k*'k*******************************'k**********************

>l // Function Definition for showArray *
2 // The first argument is a two-dimensional int array with COLS *
23 // columns. The second argument, rows, specifies the number of *
24 // rows in the array. The function displays the array's contents. *

//*****************************'k******'k****************************

void showArray(int array[][COLS], int rows)

: {

39 for (int x = 0; X < rows; XxX++)

40 {

41 for (int y = 0; y < COLS; y++)

42 {

43 cout << setw(4) << array[x][y] << " ";
44 }

45 cout << endl;

46 }

17}

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

How showArray is Called

15 int tablel[TBL1 ROWS][COLS] = {{1, 2, 3, 4},

16 {5, 6, 7, 8},

17 {9, 10, 11, 12}};

18 int table2[TBL2 ROWS][COLS] = {{10, 20, 30, 40},

19 {50, 60, 70, 80},

20 {90, 100, 110, 120},
21 {130, 140, 150, 160}};

23 cout << "The contents of tablel are:\n";
24 showArray(tablel, TBL1 ROWS);
25 cout << "The contents of table2 are:\n";
26 showArray(table2, TBL2 ROWS);

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

summing All the Elements in a

Two-Dimensional Array
@ Given the following definitions:

const int NUM ROWS
const int NUM COLS
0;

NUM_ROWS] [NUM COLS] =

int total

int numbers

{2, 7,
{67
{47
{97
{67

4

N O W
b I |

~

4

~

~

J O J O W —
~

~

6,

’

~

W N O
~

~

4},
4},
9}1
1},

1)}

5; // Number of rows
5; // Number of columns

// Accumulator

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

summing All the Elements in a
Two-Dimensional Array

// Sum the array elements.
for (int row = 0; row < NUM ROWS; row++)

{
for (int col = 0; col < NUM COLS; col++)
total += numbers|[row] [col];

}

// Display the sum.
cout << "The total is " << total << endl;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Summing the Rows of a

Two-Dimensional Array
© Given the following definitions:

const int NUM STUDENTS = 3;
const int NUM SCORES = 5;
double total; // Accumulator
double average; // To hold average scores
double scores[NUM STUDENTS] [NUM SCORES] =
{{88, 97, 79, 86, 94},
{80, 91, 78, 79, 84},
{82, 73, 17, 82, 89}};

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Summing the Rows of a
Two-Dimensional Array

// Get each student's average score.
for (int row = 0; row < NUM STUDENTS; row++)
{

// Set the accumulator.

total = 0;

// Sum a row.

for (int col = 0; col < NUM SCORES; col++)

total += scores|[row] [col];

// Get the average

average = total / NUM SCORES;

// Display the average.

cout << "Score average for student "

<< (row + 1) << " 1s " << average <<endl;

}

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Summing the Columns of a

Two-Dimensional Array
© Given the following definitions:

const int NUM STUDENTS = 3;
const int NUM SCORES = 5;
double total; // Accumulator
double average; // To hold average scores
double scores[NUM STUDENTS] [NUM SCORES] =
{{88, 97, 79, 86, 94},
{80, 91, 78, 79, 84},
{82, 73, 17, 82, 89}};

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Summing the Columns of a
Two-Dimensional Array

// Get the class average for each score.
for (int col = 0; col < NUM SCORES; col++)
{

// Reset the accumulator.

total = 0;

// Sum a column

for (int row = 0; row < NUM STUDENTS; row++)

total += scores|[row] [col];
// Get the average
average = total / NUM STUDENTS;
// Display the class average.

cout << "Class average for test " << (col + 1)

<< " 1s " << average << endl;

}

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

7.9

Arrays with Three or More
Dimensions

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Arrays with Three or More
Dimensions

» Can define arrays with any number of
dimensions:
short rectSolid[2][3][5];
double timeGrid[3]1[4]11[3]11[4];

»When used as parameter, specify all but
1st dimension in prototype, heading:
vold getRectSolid(short [][3]11[5]);

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

7.11

Introduction to the STL vector

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Introduction to the STL vector

» A data type defined in the Standard
Template Library (covered more in Chapter
17)

» Can hold values of any type:
vector<int> scores;

» Automatically adds space as more is
needed — no need to determine size at
definition

»Can use [] to access elements

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Declaring Vectors

You must #include<vector>

Declare a vector to hold int element:
vector<int> scores;

Declare a vector with initial size 30:
vector<int> scores (30) ;

Declare a vector and initialize all elements to O:
vector<int> scores (30, 0);

Declare a vector initialized to size and contents
of another vector:

vector<int> finals(scores):;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Adding Elements to a Vector

If you are using C++ 11, you can initialize a vector with a
list of values:

vector<int> numbers { 10, 20, 30, 40 };

» Use push back member function to add element to a
full array or to an array that had no defined size:
scores.push back(75);
Use size member function to determine size of a
vector:
howbig = scores.size();

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Removing Vector Elements

Use pop back member function to remove last
element from vector:
scores.pop back();
» To remove all contents of vector, use clear
member function:
scores.clear () ;

» To determine if vector is empty, use empty
member function:
while (!scores.empty())

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the Range-Based for Loop with a vector

Program 7-25

// This program demonstrates the range-based for loop with a wvector.
2 1include <ilostream>
i #1include <vector>
4 uslng namespace std;

int main()

{
// Define and initialize a wvector.

vector<int> numbers { 10, 20, 30, 40, 50 };

// Display the vector elements.
for (int val : numbers)
cout << val << endl;

return 0;
}

Program Output

10
20
30
40
50

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Other Useful Member Functions

Member Description Example

Function

at (1) Returns the value of the element at | cout <<
position i in the vector vecl.at (1) ;

capacity () | Returns the maximum number of maxElements =

elements a vector can store without | vecl.capacity():;
allocating more memory

reverse () _Reverse the order of the elements | vecl.reverse () ;
In a vector
resize Resizes the vector so it contains n | vecl.resize (5, 0);
(n, val) elements. If new elements are
added, they are initialized to val.
swap (vec?2) | Exchange the contents of two vecl.swap (vec2) ;
vectors

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

