

SCSI1013: Discrete Structures

CHAPTER 1

Quantifiers & Proof Technique

2018/2019-Sem.1: nzah@utm.my

QUANTIFIERS

- Most of the statements in mathematics and computer science are not described properly by the propositions.
- Since most of the statements in mathematics and computer science use variables, the system of logic must be extended to include statements with the variables.

- Let P(x) is a statement with variable x and A is a set.
- P a propositional function or also known as predicate if for each x in A, P(x) is a proposition.
- Set A is the domain of discourse of P.
- Domain of discourse -> the particular domain of the variable in a propositional function.

 A predicate is a statement that contains variables.

Example:

$$Q(x,y): x = y + 3$$

$$R(x,y,z):x+y=z$$

- $x^2 + 4x$ is an odd integer (domain of discourse is set of positive numbers).
- $x^2 x 6 = 0$ (domain of discourse is set of real numbers).
- UTM is rated as Research University in Malaysia (domain of discourse is set of research university in Malaysia).

- A predicate becomes a proposition if the variable(s) contained is(are)
 - Assigned specific value(s)
 - Quantified
- P(x): x > 3.

What are the truth values of P(4) and P(2)?

• Q(x,y): x = y + 3.

What are the truth values of Q(1,2) and Q(3,0)?

- Two types of quantifiers:
 - Universal
 - Existential

 Let A be a propositional function with domain of discourse B. The statement

for every x, A(x)

is universally quantified statement

- Symbol ∀ called a universal quantifier is used "for every".
- Can be read as "for all", "for any".

The statement can be written as

$$\forall x A(x)$$

Above statement is *true* if A(x) is *true* for every x in B (false if A(x) is false for at least one x in B).

• A value x in the domain of discourse that makes the statement A(x) false is called a **counterexample** to the statement.

Let the universally quantified statement is

$$\forall x (x^2 \ge 0)$$

Domain of discourse is the set of real numbers.

 This statement is true because for every real number x, it is true that the square of x is positive or zero.

• Let the universally quantified statement is $\forall x (x^2 \le 9)$

- Domain of discourse is a set B = {1, 2, 3, 4}
- When x = 4, the statement produce *false* value.
- Thus, the above statement is *false* and the counterexample is 4.

- Easy to prove a universally quantified statement is true or false if the domain of discourse is not too large.
- What happen if the domain of discourse contains a large number of elements?
- For example, a set of integer from 1 to 100, the set of positive integers, the set of real numbers or a set of students in Faculty of Computing. It will be hard to show that every element in the set is *true*.

Use existential quantifier!!

 Let A be a propositional function with domain of discourse B. The statement

There exist x, A(x)

is existentially quantified statement

- Symbol ∃ called an *existential quantifier* is used "there exist".
- Can be read as "for some", "for at least one".

The statement can be written as

$$\exists x A(x)$$

• Above statement is *true* if A(x) is *true* for at least one x in B (*false* if every x in B makes the statement A(x) *false*).

Just find one x that makes A(x) true!

Let the existentially quantified statement is

$$\exists x \left(\frac{x}{x^2 + 1} = \frac{2}{5} \right)$$

- Domain of discourse is the set of real numbers.
- Statement is *true* because it is possible to find at least one real number x to make the proposition *true*.

• For example, if x = 2, we obtain the true proposition as below

$$\left(\frac{x}{x^2+1} = \frac{2}{5}\right) = \left(\frac{2}{2^2+1} = \frac{2}{5}\right)$$

Negation of Quantifiers

 Distributing a negation operator across a quantifier changes a universal to an existential and vice versa.

$$\neg (\forall x P(x)) ; \exists x \neg P(x)$$

$$\neg (\exists x P(x)) ; \forall x \neg P(x)$$

- Let P(x) = x is taking Discrete Structure course with the domain of discourse is the set of all students.
 - $\forall x P(x)$: All students are taking Discrete Structure course.
 - $\exists x P(x)$: There is some students who are taking Discrete Structure course.
 - $\neg \exists x P(x)$: No anyone of the students who are taking Discrete Structure course.
 - $\forall x \neg P(x)$: All students are not taking Discrete Structure course.

■ $\neg \forall x P(x)$: Not All students are taking Discrete Structure course.

■ $\exists x \neg P(x)$: There is some students who are not taking Discrete Structure course

PROOF TECHNIQUES

Mathematical systems consists:

- Axioms: assumed to be true.
- Definitions: used to create new concepts.
- Undefined terms: some terms that are not explicitly defined.
- Theorem

Theorem

- Statement that can be shown to be true (under certain conditions)
- Typically stated in one of three ways:
 - As Facts
 - As Implications
 - As Bi-implications

PROOF TECHNIQUES (cont.)

Direct Proof or Proof by Direct Method

- ■Proof of those theorems that can be expressed in the form $\forall x (P(x) \rightarrow Q(x))$, D is the domain of discourse.
- ■Select a particular, but arbitrarily chosen, member *a* of the domain *D*.
- ■Show that the statement $P(a) \rightarrow Q(a)$ is true. (Assume that P(a) is true).
- ■Show that Q(a) is true.
- ■By the rule of Universal Generalization (UG), $\forall x (P(x) \rightarrow Q(x))$ is true.

- \triangleright For all integer x, if x is odd, then x^2 is odd
- > Or
- P(x) = is an odd integer
- $Q(x) = x^2$ is an odd integer
- $ightharpoonup \forall x(P(x) \rightarrow Q(x))$, the domain of discourse is set Z of all integer.

 \triangleright Can verify the theorem for certain value of x.

$$x=3, x^2=9$$
; odd

Example (cont.)

• *a* is an odd integer

$$\Rightarrow a = 2n + 1 \Rightarrow \text{for some integer n}$$

$$\Rightarrow a^2 = (2n + 1)^2$$

$$\Rightarrow a^2 = 4n^2 + 4n + 1$$

$$\Rightarrow a^2 = 2(2n^2 + 2n) + 1$$

$$\Rightarrow a^2 = 2m + 1 \Rightarrow \text{where m} = 2n^2 + 2n \text{ is an integer}$$

$$\Rightarrow a^2 \Rightarrow \text{is an odd integer}$$

PROOF TECHNIQUES (cont.)

Indirect Proof:

- The implication $p \rightarrow q$ is equivalent to the implication ($\sim q \rightarrow \sim p$)
- Therefore, in order to show that $p \rightarrow q$ is true, one can also show that the implication ($\sim q \rightarrow \sim p$) is true.
- To show that $(\neg q \rightarrow \neg p)$ is true, assume that the negation of q is true and prove that the negation of p is true.

 $P(n): n^2+3$ is an odd number

Q(n): n is even number

$$\forall n(P(n) \rightarrow Q(n))$$

 $P(n) \rightarrow Q(n) \equiv \sim Q(n) \rightarrow \sim P(n)$

• $\sim Q(n)$ is true, n is not even, n is odd so n=2k+1

$$n^{2} + 3 = (2k + 1)^{2} + 3$$

$$= 4k^{2} + 4k + 1 + 3$$

$$= 4k^{2} + 4k + 4$$

$$= 2(2k^{2} + 2k + 2)$$

Example (cont.)

$$t = 2k^2 + 2k + 2 \implies t$$
 is integer

$$n^2 + 3 = 2t$$

 n^2+3 is an even integer, thus P(n) is true

PROOF TECHNIQUES (cont.)

Proof by Contradiction

Assume that the conclusion is not true and then arrive at a contradiction.

Prove that there are infinitely many prime numbers.

Proof:

- ■Assume there are not infinitely many prime numbers, therefore they are can be listed, i.e. $p_1, p_2, ..., p_n$
- ■Consider the number $q = p_1 \times p_2 \times ... \times p_n + 1$.
- q is either prime or not divisible, but not listed above.
- Therefore, q is a prime. However, it was not listed.
- Contradiction! Therefore, there are infinitely many primes numbers.