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•  Most	of	the	statements	in	mathema5cs	and	
computer	science	are	not	described	properly	
by	the	proposi5ons.		

•  Since	most	of	the	statements	in	mathema5cs	
and	computer	science	use	variables,	the	
system	of	logic	must	be	extended	to	include	
statements	with	the	variables.	

QUANTIFIERS	
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•  Let	P(x)	is	a	statement	with	variable	x	and	A	is	
a	set.		

•  P	a	proposi&onal	func&on	or	also	known	as	
predicate	if	for	each	x	in	A,	P(x)	is	a	
proposi5on.		

•  Set	A	is	the	domain	of	discourse	of	P.	
•  Domain	of	discourse	->	the	par5cular	domain	
of	the	variable	in	a	proposi5onal	func5on.	

	

QUANTIFIERS	(cont.)	
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•  A	predicate	is	a	statement	that	contains	
variables.	

	
•  Example:	

			P	(x)	:	x	>	3	
			Q	(x,y)	:	x	=	y	+	3	
			R	(x,y,z)	:	x	+	y	=	z	

QUANTIFIERS	(cont.)	
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•  x2	+	4x	is	an	odd	integer	(domain	of	discourse	
is	set	of	posi5ve	numbers).	

•  x2	–	x	–	6	=	0	(domain	of	discourse	is	set	of	
real	numbers).	

•  UTM	is	rated	as	Research	University	in	
Malaysia	(domain	of	discourse	is	set	of	
research	university	in	Malaysia).	

Example	
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•  A	predicate	becomes	a	proposi5on	if	the	
variable(s)	contained	is(are)	
§ Assigned	specific	value(s)	
§ Quan%fied	

•  P	(x)	:	x	>	3.		
What	are	the	truth	values	of	P	(4)	and	P	(2)?	
•  Q	(x,y)	:	x	=	y	+	3.		
What	are	the	truth	values	of	Q	(1,2)	and	Q	(3,0)?	

QUANTIFIERS	(cont.)	
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•  Two	types	of	quan5fiers:	
§ Universal	
§ Existen%al	

QUANTIFIERS	(cont.)	
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•  Let	A	be	a	proposi5onal	func5on	with	domain	
of	discourse	B.	The	statement	

for	every	x,	A(x)	
				is	universally	quan&fied	statement		
•  Symbol	∀	called	a	universal	quan&fier	is	used	
“for	every”.		

•  Can	be	read	as	“for	all”,	“for	any”.		

QUANTIFIERS	(cont.)	
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•  The	statement	can	be	wri_en	as	

∀x	A(x)	
•  Above	statement	is	true	if	A(x)	is	true	for	
every	x	in	B	(	false	if	A(x)	is	false	for	at	least	
one	x	in	B	).		

	
•  A	value	x	in	the	domain	of	discourse	that	
makes	the	statement	A(x)	false	is	called	a	
counterexample	to	the	statement.	

QUANTIFIERS	(cont.)	
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•  Let	the	universally	quan5fied	statement	is	
∀x	(x2	≥	0)	

•  Domain	of	discourse	is	the	set	of	real	numbers.		
	
•  This	statement	is	true	because	for	every	real	
number	x,	it	is	true	that	the	square	of	x	is	
posi5ve	or	zero.	

Example	
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•  Let	the	universally	quan5fied	statement	is	
∀x	(x2	≤	9)	

•  Domain	of	discourse	is	a	set	B	=	{1,	2,	3,	4}	
•  When	x	=	4,	the	statement	produce	false	
value.		

•  Thus,	the	above	statement	is	false	and	the	
counterexample	is	4.	

Example	
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•  Easy	to	prove	a	universally	quan5fied	statement	is	
true	or	false	if	the	domain	of	discourse	is	not	too	
large.		

•  What	happen	if	the	domain	of	discourse	contains	a	
large	number	of	elements?		

•  For	example,	a	set	of	integer	from	1	to	100,	the	set	of	
posi5ve	integers,	the	set	of	real	numbers	or	a	set	of	
students	in	Faculty	of	Compu5ng.	It	will	be	hard	to	
show	that	every	element	in	the	set	is	true.	

Use	existen5al	quan5fier!!		

QUANTIFIERS	(cont.)	
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•  Let	A	be	a	proposi5onal	func5on	with	domain	
of	discourse	B.	The	statement	

There	exist x,	A(x)	
				is	existen&ally	quan&fied	statement		
•  Symbol	∃	called	an	existen&al	quan&fier		is	
used	“there	exist”.		

•  Can	be	read	as	“for	some”,	“for	at	least	one”.		

QUANTIFIERS	(cont.)	
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•  The	statement	can	be	wri_en	as	

∃x	A(x)	
•  Above	statement	is	true	if	A(x)	is	true	for	at	
least	one	x	in	B	(false	if	every	x	in	B	makes	the	
statement	A(x)	false).	

	
•  Just	find	one	x	that	makes	A(x)	true!	

QUANTIFIERS	(cont.)	
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•  Let	the	existen5ally	quan5fied	statement	is	
												∃x		
	
•  Domain	of	discourse	is	the	set	of	real	numbers.		
•  Statement	is	true	because	it	is	possible	to	find	
at	least	one	real	number	x	to	make	the	
proposi5on	true.		

Example	
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•  For	example,	if	x	=	2,	we	obtain	the	true	
proposi5on	as	below	
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•  Distribu5ng	a	nega5on	operator	across	a	
quan5fier	changes	a	universal	to	an	existen5al	
and	vice	versa.	

											¬	(∀x	P(x))	;		∃x	¬	P(x)		
	
												¬		(∃x	P(x))	;		∀x	¬	P(x)	

Nega%on	of	Quan%fiers	
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•  Let	P(x)	= x	is	taking	Discrete	Structure	course	
with	the	domain	of	discourse	is	the	set	of	all	
students.	
§ ∀x	P(x):	All	students	are	taking	Discrete	Structure	
course.	

§ ∃x	P(x):	There	is	some	students	who	are	taking	
Discrete	Structure	course.	

§  ¬∃x	P(x):	No	anyone	of	the	students	who	are	taking	
Discrete	Structure	course.	

§ ∀x ¬	P(x):	All	students	are	not	taking	Discrete	
Structure	course.	

	

Example	
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§  ¬∀x	P(x):	Not	All	students	are	taking	Discrete	
Structure	course.	

	
§ ∃x	¬P(x):	There	is	some	students	who	are	not	
taking	Discrete	Structure	course	
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•  Mathema%cal	systems	consists:	
					-	Axioms:	assumed	to	be	true.	

					-	Defini5ons:	used	to	create	new	concepts.	
					-	Undefined	terms:	some	terms	that	are	not	explicitly	defined.	

					-	Theorem	
•  	Theorem	
– Statement	that	can	be	shown	to	be	true	(under	
certain	condi5ons)	

– Typically	stated	in	one	of	three	ways:	
• As	Facts	
• As	Implica5ons		
• As	Bi-implica5ons	

PROOF	TECHNIQUES	
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Direct	Proof	or	Proof	by	Direct	Method	
	
§ Proof	of	those	theorems	that	can	be	expressed	in	the	
form	∀x	(P(x)	→	Q(x)),	D	is	the	domain	of	discourse.	
§ Select	a	par5cular,	but	arbitrarily	chosen,	member	a 
of	the	domain	D.			
§ Show	that	the	statement	P(a)	→	Q(a)	is	true.	(Assume	
that	P(a)	is	true).	
§ Show	that	Q(a)	is	true.	
§ By	the	rule	of	Universal	Generaliza5on	(UG),		

			∀x	(P(x)	→	Q(x))	is	true.	

PROOF	TECHNIQUES	(cont.)	
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Ø 	For	all	integer	x,	if	x	is	odd,	then	x2	is	odd	
Ø 	Or		

• P(x)	=		is	an	odd	integer	
• Q(x)	=	x2	is	an	odd	integer	

Ø 																													,	the	domain	of	discourse	is	set	Z	of	
all		integer.	

	
Ø 	Can	verify	the	theorem		for	certain	value	of	x.		

				x=3,	x2	=9	;	odd 		

Example	

))()(( xQxPx →∀
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•  	a	is	an	odd	integer	
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where	m=	2n2	+	2n	is	an	integer	
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Example	(cont.)	
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•  Indirect	Proof	:	
§  The	implica5on	p	→	q		is	equivalent	to	the	
implica5on	(∼q		→	∼p)		

§  Therefore,	in	order	to	show	that	p	→	q		is	true,	
one	can	also	show	that	the	implica5on	(∼q	→	∼p)	
is	true.	

§  To	show	that	(∼q		→	∼p)	is	true,	assume	that	the	
nega5on	of	q	is	true	and	prove	that	the	nega5on	
of	p	is	true.	

PROOF	TECHNIQUES	(cont.)	
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	P(n)	:	n2+3	is	an	odd	number	
	Q(n)	:	n	is	even	number	

	
	
	
•  ~Q(n)	is	true	,	n	is	not	even,	n	is	odd	so	n=2k+1	
	

Example	
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n2+3	is	an	even	integer,	thus	~P(n)	is	true	

Example	(cont.)	
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Proof	by	Contradic%on		
	
Assume	that	the	conclusion	is	not	true	and	then	arrive	at	
a	contradic5on.	

PROOF	TECHNIQUES	(cont.)	
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	Prove	that	there	are	infinitely	many	prime	numbers.	
	
Proof:	
§ Assume	there	are	not	infinitely	many	prime	numbers,	
therefore	they	are	can	be	listed,		i.e.	p1,p2,…,pn	
§ Consider	the	number	q	=	p1	x	p2	x…x	pn	+	1.		
§ 	q	is	either	prime	or	not	divisible,	but	not	listed	above.	
Therefore,	q	is	a	prime.	However,	it	was	not	listed.	
§ Contradic5on!	Therefore,	there	are	infinitely	many	
primes	numbers.	

Example	
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