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OUTM /" \yhy Are We Studying Logic?

—

Some of the reasons:
e Logic is the foundation for computer operation
e Logical conditions are common in programs:
Example:
Selection: if (score <=max){...}
Iteration: while (i<limit && list[i]!=sentinel) ...
e All manner of structures in computing have properties that need
to be proven (and proofs that need to be understood).
Examples: Trees, Graphs, Recursive Algorithmes, . . .
e Programs can be proven correct.
e Computational linguistics must represent and reason about
human language, and language represents thought (and thus also
logic).
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— PROPOSITION

A statement or a proposition, is a declarative

sentence that is either TRUE or FALSE, but not
both.

Example:
e 4isless than 3.
* 71san even integer.

 Washington, DC, is the capital of
United State.




.......................... Example
2 P

i) Why do we study mathematics?
i) Study logic.

iii) What is your name?

iv) Quiet, please.

The above sentences are not propositions. Why ?




IIIIIIIIIIIIIIIIIIIIIIIIII

— Example

i) The temperature on the surface of the planet
Venus is 800 F.
i) The sun will come out tomorrow.

Propositions? Why?




o CONJUNCTIONS

Conjunctions are:

e Compound propositions formed in English
with the word “and”,

* Formed 1n logic with the caret symbol
(“ A ), and

 True only when both partlclpatmg
propositions are true.




CONJUNCTIONS ...

TRUTH TABLE: This tables aid in the evaluation
of compound propositions.
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— Example

p :21Isaneven integer }
. propositions
q : 3is an odd number

p A q | symbols - statements

: 2 is an even integer and 3 is an odd number

p : today is Monday ; q : it is hot

p A g:today is Monday and it is hot
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Example
2

Proposition:-
p : 2 divides 4
q : 2 divides 6

Symbol: Statement:-
p A q:2 divides 4 and 2 divides 6.

or,
p A g: 2 divides both 4 and 6.




IIIIIIIIIIIIIIIIIIIIIIII I xample

Proposition:-
p :5is an integer
g : 5is not an odd integer

Symbol: Statement:-




~~~~~~~~~~~~~~~~~~~~~~~~ DISJUNCTION

 Compound propositions formed in English
with the word “or”,

* Formed in logic with the caret symbol (“ V ”),
and,

* True when one or both participating
propositions are true.




©UTM DISJUNCTION ..,

Let p and q be propositions. The disjunction of p
and q, written p V q is the statement formed

by putting statements p and q together using

the word “or”. The symbol V is called “or”




The truth table for p Vv g:

T T T
T F T
F T T
F F F




IIIIIIIIIIIIIIIIIIIIIIIIII I xample

i) p: 2isaninteger ; q:3is greater than5
p V q =» 2isaninteger or 3 is greater than 5

i) p:1+1=3 ; g : A decade is 10 years
pVaqg=

iii) p:3isan even integer; g : 3 is an odd integer

pVg=D




. NEGATION

Negating a proposition simply flips its
value. Symbols representing negation
include: —x ,x, ~x, x' (NOT)

Let p be a proposition.

The negation of p, written - p

is the statement obtained by negating
statement p.




NEGATION...

The truth table of - p:

T F
F T




........................ Example
p : 2 1s positive

- p = 2is not positive.
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— Exercise (1)

p: It will rain tomorrow ; q: it will snow tomorrow

Give the negation of the following statement and write
the symbol.

It will rain tomorrow or it will snhow tomorrow.
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p— Exercise (2)

In each of the following, form the conjunction and the
disjunction of p and g by writing the symbol and the
statements.

i) p: | will drive my car
g: | will be late

i) p: NUM > 10
g : NUM < 15
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— Exercise (3)

Suppose x is a particular real number. Let p, q

’

and r symbolize “0<x”, “x <3” and “x =37,
respectively. Write the following inequalities
symbolically:

a) x<3

b) 0<x <3

c) 0<x<3
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P Exercise (4)

State either TRUE or FALSE if p and r are TRUE
and g is FALSE.

a) " pA(gVr)

b) (r A~q)V (pVr)
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CONDITIONAL PROPOSITIONS
2

Let p and q be propositions.
“if p, then q@”

is a statement called a conditional proposition,
written as

p—>q




CONDITIONAL PROPOSITIONS...,

The truth table of p 2 g
=> Cause and effect relationship

TRUE if
FALSE if p both
= True and true or
q =false p=false
P | a | p>q W
value of
T T T q
Q

T F F

F T T

F F T




IIIIIIIIIIIIIIIIIIIIIIIIII I xample

p : today 1s Sunday ; ¢ : I will go for a walk

P — q : If today 1s Sunday, then I will go for a
walk.

p . 1getabonus ;g :1will buy a new car

P 7 4- If I get a bonus, then I will buy a new
car




uuuuuuuuuuuuuuuuuuuuuuuuuu Exa I

p : x/2 1s an integer.
g : X 1S an even Integer.

P — q :if x/2 is an integer, then x is an even
Integer.
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— BICONDITIONAL
Let p and q be propositions.

“pif and only if q”

is a statement called a biconditional proposition,
written as

p<2>q




BICONDITIONAL ...,

The truth table of p €= g:

P g peq

T

T
T
F
F

-
F F
T F
F T




.. Exam P le
p : my program will compile
g : it has no syntax error.

p < g : My program will compile it and only if it
has no syntax error.

p : x is divisible by 3
g : X is divisible by 9

p &> g:; Xis divisible by 3 if and only if x is
divisible by 9.




UTM
/-—/@ / LOGICAL EQUIVALENCE

" The compound propositions Q and R are made
up of the propositions p,, ..., p,.

" Q and R are logically equivalent and write,
Q=R
provided that given any truth values of p,, ...,
p,, either Q and R are both true or Q and R are
both false.




Example

R=-q—>-p
Showthat Q=R

The truth table shows that, Q = R

EEERIE RS

T T
T F F F
F T T T
F F T T




Example

Show that,

~(p>q)=p N -q

The truth table shows that,
~(p>a)=p A -q

P g (P—q) PAG

T T

T F T T
F T F F
F F F F




PRECEDENCE OF LOGICAL CONNECTIVES

Precedence of logical connectives

is as follows:

not

A Highest
and

or

If...then

T v < > 1

Lowest

If and only if




Example

Construct the truth table for,
A=-(pV q)->(q N\ p)

Solution:

nn (bva) | -(pVa) | (qAp) n
T T T - T T
T F - - T
F T T - -
F F F T - F
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— Exercise (5)

Construct the truth table for each of the
following statements:

i) -pAg
i) =-(pVaq)>q
i) -(~-p Ag) Vg

iv) (p 2> q)>(-q—>-p)




~~~~~~~~~~~~~~~~~~~~~~~~ LOGIC & SET THEORY

Logic and set theory go very well togather. The
previous definitions can be made very succinct:

x¢ A If and only if —(xeA)
AcB if and only if (xe A — xeB) is True
X € (AnB) if and only if (xeA A xeB)
X € (AuB) if and only If (xeA v xeB)
X € A-B if and only if (xeA A x¢B)
X e AABIfand only if (xeA A x¢B) v (xeB A xgA)

X € A’ if and only If —(xeA)
X € P(A) if and only if XcA




Venn Diagrams

Venn Diagrams are used to depict the various
unions, subsets, complements, intersections
etc. of sets.

A
aAVA




e /
4 Logic and Sets

are closely related

Tautology Set Operation Identity
pvgeqvp AuB=BUA
pargeqap AnB=BnA
pv(gvr)<(pvq)vr Au(BuC)=(AuB)uC
pr(gar)<(pag)ar An(BAC)=(AnB)nC
pv(gar)<(pvq)a(pvr) Au(BAC)=(AuB)n(AuC)
par(gvr)e(pag)v(pnar) An(BuC)=(AnB)u(AnC)
pr—q < pr=(prg) A-B=A-(AnB)
pr—gvr)e(par=g)a(pa—r) A-(BnC)=(A-B)u(A-C)
pA—gar)<(pa=q)v(pa=r) A-(BuC)=(A-B)~(A-C)
pa(ga—=r)<(prg)a—(par—r) An(B-C)=(AnB)—-(AnC)
pv(ga—=r)<(pvg)a—(ra—p) Au(B-C)=(AuB)-(C-A)
pr—v(ga=r)es(par—q)v(pAr) A-(B-C)=(A-B)u(AnC)

The above identities serve as the basis for an "algebra of sets".
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eu /S
’ Logic and Sets

are closely related

Set Operation Identity

Tautology
prpep ArA=A
pvpep AUA=A
pPr—gr—q)ep A-D=A
pv—{gr—q)<p Av@=A
Contradiction Set Operation Identity
pr—p A-A=0
p~(gar—q) An@=0
par—p A-A=0

The above identities serve as the basis for an "algebra of sets".
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. Theorem for Logic

Let p, g and r be propositions.

ldempotent l[aws:
pAp=p
pVp=sp

Truth table:

p | pAp pvp




@UTM/ Theorem for Logic (cont)

Double negation law:

~=p=p

Commutative laws:

pANg=qgAp
pVag=qVp




UTM / i
OUM /" Theorem for Logic (o)

Associative laws:

(b Ag) ANr=p A\ (g N\
ebVaq Vr=pV(qgVr)
Distributive laws:

pV (qgAr)=(pVg) A\ (pVr) PROVE
pA(@QVr)=(pAq)V (pAr) |

Absorption laws:

pAlp Va)=p O

pViibAqg)=p
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Prove: Absorption Laws

pPla |pPAalpPvq) pVv(pPAqg)
T(T T T
T|F T T
FIT F F
F|F F F
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©OUIM Theorem for Loglc (cont.)

De Morgan’s laws:

- Aqg)=(-p) V (-q)
-bVqg)=(-p) \ (-q)

The truth table for=(pV q)=(-p) A (- q)

p q | =lpva) | =pA=g
T T F F
T F F ;
F T F F
F F T T
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State whether or not R = Q.
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— Exercise (7)

Propositional functions p, g and r are defined as follows:

p is Iln — 7II
qiS Ila>5ll
ris"x=0"

Write the following expressions in terms of p, g and r, and show
that each pair of expressions is logically equivalent. State
carefully which of the above laws are used at each stage.

(@) ((n=7)V (a>5))(x=0)
((n=7)(x=0)) V ((a>5)(x=0))

(b) -(n=7)(a<5))
(n=7)V (a>5)

(c) (n=7)V (-((as5)(x=0))
(n=7)V (a>5)) V (x#0)
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— Exercise (8)

Propositions p, g, r and s are defined as follows:
p is "l shall finish my Coursework Assignment"
q is "l shall work for forty hours this week"

ris "l shall pass Maths"

sis "l like Maths"

Werite each sentence in symbols:

(a) I shall not finish my Coursework Assignment.

(b) I don’t like Maths, but | shall finish my Coursework Assignment.
(c) If I finish my Coursework Assignment, | shall pass Maths.

(d) I shall pass Maths only if | work for forty hours this week and finish my
Coursework Assignment.

Write each expression as a sensible (if untrue!) English sentence:

(e)g Vp
(f) -p = -r

innovative e entrepreneurial e global www.utm.my



IIIIIIIIIIIIIIIIIIIIIIIIII

P Exercise (9)

For each pair of expressions, construct truth
tables to see if the two compound propositions
are logically equivalent:

(@) p V(g A-p)
pVaq

(b) (=pAq)V(pA-=-q)
(-p AN-q)V (pAq)




