

SCSI1013: Discrete Structures

CHAPTER 1

SET THEORY [Part 2: Operation on Set]

2018/2019 - SEM. 1 : nzah@utm.my

Union

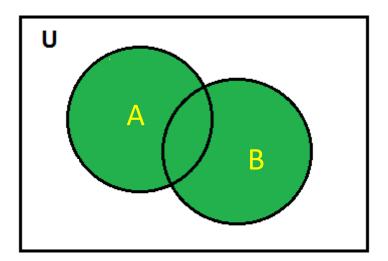
• The union of two sets A and B, denoted by $A \cup B$, is defined to be the set

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

 The union consists of all elements belonging to either A or B (or both)

Union

• Venn diagram of $A \cup B$



$$A=\{1, 2, 3, 4, 5\}, B=\{2, 4, 6\} \text{ and } C=\{8, 9\}$$

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

$$A \cup C = \{1, 2, 3, 4, 5, 8, 9\}$$

$$B \cup C = \{2, 4, 6, 8, 9\}$$

$$A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 8, 9\}$$

• If A and B are finite sets, the cardinality of $A \cup B$,

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Intersection

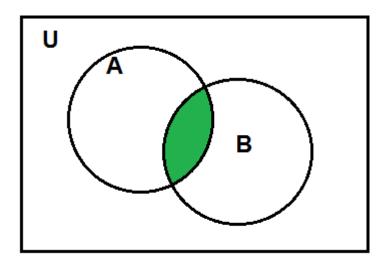
• The intersection of two sets A and B, denoted by $A \cap B$, is defined to be the set

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

 The intersection consists of all elements belonging to both A and B.

Intersection

• Venn diagram of $A \cap B$



$$A=\{1, 2, 3, 4, 5, 6\}, B=\{2, 4, 6, 8, 10\}$$
 and $C=\{1, 2, 8, 10\}$

$$A \cap B = \{2, 4, 6\}$$

 $A \cap C = \{1, 2\}$
 $C \cap B = \{2, 8, 10\}$
 $A \cap B \cap C = \{2\}$

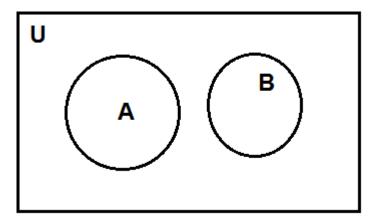
Disjoint

Two sets A and B are said to be disjoint if,

$$A \cap B = \emptyset$$

Disjoint

• Venn diagram, $A \cap B = \emptyset$



$$A = \{1, 3, 5, 7, 9, 11\}$$

$$B = \{2, 4, 6, 8, 10\}$$

$$A \cap B = \emptyset$$

Difference

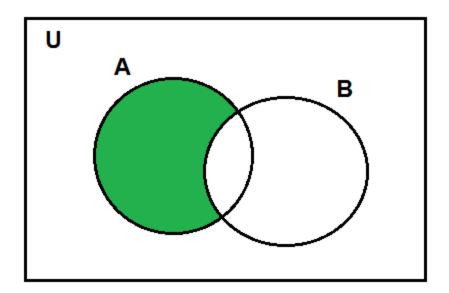
The set

$$A-B=\{x\mid x\in A \text{ and } x\not\in B\}$$
 is called the difference.

• The difference A - B consists of all elements in A that are not in B.

Difference

Venn diagram of A—B



$$A - B = \{1, 3, 5, 7\}$$

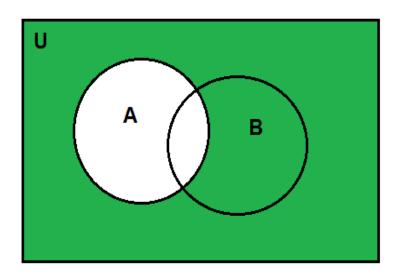
Complement

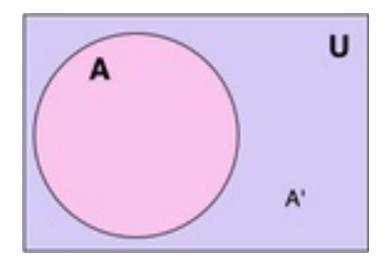
 The complement of a set A with respect to a universal set U, denoted by A' is defined to be

$$A' = \{x \in U \mid x \notin A\}$$
$$A' = U - A$$

Complement

Venn diagram of A



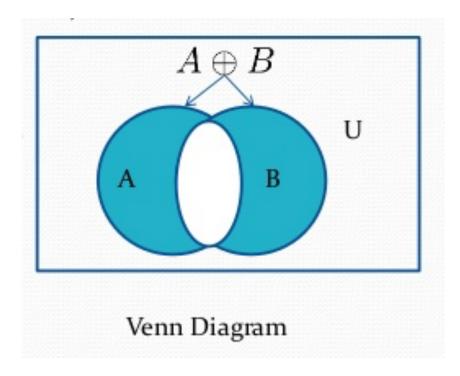


Let *U* be a universal set,

$$A' = U - A = \{1, 3, 5, 7\}$$

Symmetric Difference

The symmetric difference of set A and set B, denoted by $A \oplus B$ is the set $(A - B) \cup (B - A)$



$$U = \{0,1,2,3,4,5,6,7,8,9,10\}$$

$$A = \{1, 2, 3, 4, 5\}; B = \{4, 5, 6, 7, 8\}$$

$$A \oplus B = (A - B) \cup (B - A) = \{1, 2, 3, 6, 7, 8\}$$

$$A - B = \{1, 2, 3\}$$

$$B-A = \{6,7,8\}$$

Set Identities

(or Properties of Set)

Let all sets referred to below be subsets of a universal set *U*.

1. Commutative laws: For all sets A and B,

a)
$$A \cap B = B \cap A$$

b)
$$A \cup B = B \cup A$$

2) Associative laws: For all sets A, B and C,

a)
$$A \cap (B \cap C) = (A \cap B) \cap C$$

b)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

3) Distributive laws: For all sets A, B and C,

a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4) Identity laws: For all sets A,

a)
$$A \cup \emptyset = A$$

b)
$$A \cap U = A$$

5) Complement laws: For all sets A,

a)
$$A \cap A' = \emptyset$$

b)
$$A \cup A' = U$$

6) Double Complement law: For all sets A,

$$(A')' = A$$

7) Idempotent laws: For all sets A,

a)
$$A \cup A = A$$

b)
$$A \cap A = A$$

8) Universal bound laws: For all sets A,

$$(A')' = A$$

9) De Morgan's laws:

a)
$$(A \cap B)' = A' \cup B'$$

b)
$$(A \cup B)' = A' \cap B'$$

10) Absorption laws: For all sets A and B,

a)
$$A \cup (A \cap B) = A$$

b)
$$A \cap (A \cup B) = A$$

11) Complements of U and \varnothing :

a)
$$\emptyset' = U$$

12) Set difference laws: For all sets A and B,

$$A-B=A\cap B'$$

13) Properties of empty set

$$A \cup \emptyset = A$$

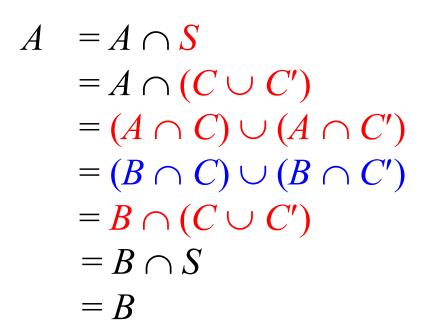
$$A \cap \emptyset = \emptyset$$

 Let A, B and C denote the subsets of a set S and let C' denote a complement of C in S.

• If $A \cap C = B \cap C$ and $A \cap C' = B \cap C'$, then prove that A = B

Given: $A \cap C = B \cap C$ and $A \cap C' = B \cap C'$

Property (law) applied



[universal set]

[complement]

[distributive]

given conditions

[distributive law]

[universal set]

By referring to the properties of set operations (Set Identities), show that:

$$A - (A \cap B) = A - B$$

Solution

From set identities: $A - B = A \cap B'$

$$A - (A \cap B) = A \cap (A \cap B)'$$

$$= A \cap (A' \cup B')$$

$$= (A \cap A') \cup (A \cap B')$$

$$= \emptyset \cup (A \cap B')$$

$$= (A \cap B') \cup \emptyset$$

$$= A \cap B'$$

$$= A - B$$

Property (law) applied

[set difference laws]

[De Morgan's laws]

[distributive laws]

[complement laws]

[commutative]

[Identity laws]

Generalized Unions and Intersections

The *union* of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

Notation:

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup ... \cup A_{n} = \left\{ x \in U \middle| x \in A_{i} \text{ for at least one } i = 0, 1, 2,, n \right\}$$

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \ldots \cup A_n = \left\{ x \in U \middle| x \in A_i \text{ for at least one nonnegative integer } i \right\}$$

Generalized Unions and Intersections

(cont'd)

The *intersection* of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

Notation:

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap ... \cap A_{n} = \left\{ x \in U \middle| x \in A_{i} \text{ for all } i = 0, 1, 2, n \right\}$$

$$\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap \ldots \cap A_n = \left\{ x \in U \middle| x \in A_i \text{ for all nonnegative integer } i \right\}$$

For $i = 1, 2, \ldots$, let $A_i = \{i, i+1, i+2, \ldots\}$. Then,

$$\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{1, 2, 3, \dots\},\$$

and

$$\bigcap_{i=1}^{n} A_i = \bigcap_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{n, n+1, n+2, \dots\} = A_n$$

Cartesian Product

Let A and B be sets.

• An ordered pair of elements $a \in A$ dan $b \in B$ written (a, b) is a listing of the elements a and b in a specific order.

• The ordered pair (a, b) specifies that a is the first element and b is the second element.

• An ordered pair (a, b) is considered distinct from ordered pair (b, a), unless a=b.

• Example $(1, 2) \neq (2, 1)$

The Cartesian product of two sets A and B, written A×B is the set,

$$A\times B = \{(a,b) \mid a \in A, b \in B\}$$

For any set A,

$$A \times \emptyset = \emptyset \times A = \emptyset$$

Example

$$A = \{a, b\}, B = \{1, 2\}.$$

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$$

$$B \times A = \{(1, a), (1, b), (2, a), (2, b)\}$$

..Cartesian Product

• if $A \neq B$, then $A \times B \neq B \times A$.

• if |A| = m and |B| = n, then $|A \times B| = mn$.

Example

• $A = \{1, 3\}, B = \{2, 4, 6\}.$

$$A \times B = \{(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6)\}$$

 $B \times A = \{(2, 1), (2, 3), (4, 1), (4, 3), (6, 1), (6, 3)\}$

$$A \neq B$$
, $A \times B \neq B \times A$
 $|A| = 2$, $|B| = 3$, $|A \times B| = 2x3 = 6$

• The Cartesian product of sets A_1 , A_2 ,, A_n is defined to be the set of all n-tuples

$$(a_1, a_2,...a_n)$$
 where $a_i \in A_i$ for $i=1,...,n$;

• It is denoted $A_1 \times A_2 \times \times A_n$ $|A_1 \times A_2 \times \times A_n| = |A_1| ... |A_2| |A_n|$

Example

• $A = \{a, b\}, B = \{1, 2\}, C = \{x, y\}$

$$A \times B \times C = \{(a,1,x),(a,1,y), (a,2,x), (a,2,y), (b,1,x), (b,1,y), (b,2,x), (b,2,y)\}$$

• $|A \times B \times C| = 2 \times 2 \times 2 = 8$

Let,
 U = { a, b, c, d, e, f, g, h, i, j, k, l, m }
 A = { a, c, f, m}
 B = { b, c, g, h, m }

Find:

i)
$$A \cup B$$
 ii) $A \cap B$
iii) $|A \cup B|$ iv) $A - B$ v) A'

Let the universal set, $U=\{1, 2, 3, 4,, 10\}$.

Let $A = \{1, 4, 7, 10\}, B = \{1, 2, 3, 4, 5\}$ and

C={2, 4, 6, 8}.

List the elements of each set:

- a) *U'*
- b) $B' \cap (C-A)$
- c) B-A
- d) $(A \cup B) \cup (C B)$
- e) $(A \cup B) \cap (C B)$

Let A, B and C be sets such that

$$A \cap B = A \cap C$$
 and $A \cup B = A \cup C$

• Prove that B = C


```
Let A = \{w, x\}, B = \{1, 2\} and C = \{KB, SD, PS\}.
a) Determine the following set,
      i) A \times B ii) B \times C iii) A \times C
      iv) A \times B \times C
      v) B \times C \times A
      vi) A \times B \times A \times C
b) Find: |A \times B|; |B \times C|; |A \times C|; |A \times B \times C|;
               |B \times C \times A|; |A \times B \times A \times C|
```