starting out with >>> ,f;g,f'::'.
C h a pte r 1 . 4 From Control Structures
through Objects
I ntrod u ctio n NINTH EDITION
to
Computers
and
Programming

TONY GADDIS

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Why Program?

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

sategostwih >>> gy

il
-

\J 5
S’ From Coatrol Structures
through Objects

Why Program?

Computer — programmable machine designed
to follow instructions

Program — instructions in computer memory to
make it do something

Programmer — person who writes instructions
(programs) to make computer perform a task

SO, without programmers, no programs;
without programs, a computer cannot do
anything

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

From Coatrol Structures
through Objects

Sl
TONY GADDIS

1.2

Computer Systems: Hardware
and Software

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Main Hardware Component
Categories:

Central Processing Unit (CPU)
Main Memory

Secondary Memory / Storage
Input Devices

Output Devices

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Main Hardware Component

Categories

Central Processing
Unit

‘W\m\\\\\

'

;M

&
&P

Main Memory
(RAM)

t Secondary

torage Devices

) 4

Figure 1-2

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Central Processing Unit (CPU)

Comprised of:

Control Unit

Retrieves and decodes program instructions
Coordinates activities of all other parts of computer

Arithmetic & Logic Unit

Hardware optimized for high-speed numeric
calculation

Hardware designed for true/false, yes/no decisions

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

CPU Organization

Central Processing Unit

Arithmetic and

Logic Unit
Instruction A Result
(Input) (Output)
= v B

Control Unit

Figure 1-3

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Main Memory

' It is volatile. Main memory is erased when
program terminates or computer is turned off

Also called Random Access Memory (RAM)

» Organized as follows:

bit: smallest piece of memory. Has values 0 (off,
false) or 1 (on, true)

byte: 8 consecutive bits. Bytes have addresses.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Main Memory

» Addresses — Each byte in memory is
identified by a unique number known as
an address.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Main Memory

D I e C I D e
I] 7 R) N 7) R [BN 7 RO [RN [R T

In Figure 1-4, the number 149 is stored in the byte with
the address 16, and the number 72 is stored at address

23.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Secondary Storage

*Non-volatile: data retained when program
IS not running or computer is turned off

»Comes in a variety of media:

magnetic: traditional hard drives that use a
moveable mechanical arm to read/write

»solid-state: data stored in chips, no moving
parts

optical: CD-ROM, DVD
Flash drives, connected to the USB port

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Input Devices

» Devices that send information to the
computer from outside
* Many devices can provide input:

Keyboard, mouse, touchscreen, scanner,
digital camera, microphone

»Disk drives, CD drives, and DVD drives

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Software-Programs That Run on a
Computer

» Categories of software:

System software: programs that manage the
computer hardware and the programs that run
on them.
Examples: operating systems, utility programs,
software development tools

» Application software: programs that provide
services to the user.

»Examples : word processing, games, programs to
solve specific problems

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

From Coatrol Structures
through Objects

STy 4
TONY GADDIS

Programs and Programming
Languages

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Programs and Programming
Languages

» A program is a set of instructions that the
computer follows to perform a task

»We start with an algorithm, which is a set
of well-defined steps.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Example Algorithm for Calculating
Gross Pay

Display a message on the screen asking “How many hours did you work?”

2. Wait for the user to enter the number of hours worked. Once the user enters a num-
ber, store it in memory.

Display a message on the screen asking “How much do you get paid per hour?”

4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it in
memory.

5. Multiply the number of hours by the amount paid per hour, and store the result in
memory.

6. Display a message on the screen that tells the amount of money earned. The message
must include the result of the calculation performed in Step 5.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Machine Language

» Although the previous algorithm defines
the steps for calculating the gross pay, it is
not ready to be executed on the computer.

» The computer only executes machine
language instructions

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Machine Language

» Machine language instructions are binary
numbers, such as

1011010000000101

» Rather than writing programs in machine
language, programmers use programming
languages.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Programs and Programming

Languages
@ Types of languages:

High level (Easily read by humans)

HIHT

© Low-level: used for |
communication with computer S
hardware directly. Often written f_
in binary machine code (0’s/1’s)

directly.

Low level (machine language)
10100010 11101011

@ High-level: closer to human
language

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Some Well-Known Programming
Languages (Table 1-1 on Page 10)

C SEEE
BASIC Ruby
FORTRAN Java
Visual Basic
COBOL C#

. JavaScript
Python

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

From a High-Level Program to an

Executable File

Create file containing the program with a text
editor.

Run preprocessor to convert source file
directives to source code program statements.

Run compiler to convert source program into
machine Instructions.

Run linker to connect hardware-specific code to
]g|1ach|ne Instructions, producing an executable
le.

Steps b—d are often performed by a single
command or button click.

Errors detected at any step will prevent
execution of following steps.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

From a High-Level Program to an
Executable File

~m Source code is entered
with a text editor by

the programmer.

f#include <iostream>
using namespace std;
Preprocessor

int main()
{

cout<<{"Hello World'n";
return 0O;

Compiler

Object Code

Linker

Executable Code

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Integrated Development
Environments (IDEs)

» An integrated development environment,
or IDE, combine all the tools needed to
write, compile, and debug a program into a
single software application.

» Examples are Microsoft Visual C++, Turbo
C++ Explorer, CodeWarrior, etc.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Integrated Development

Environments (IDEs)

M Gross Pay - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG

0-0 B-aAdRMd B 90

TEAM SQL

P Local Windows Debugger ~

TOOLS TEST

Quick Launch (Ctrl+Q)
ANALYZE WINDOW HELP

6. A

=

Debug -

~ Solution Explorer ,,,,,,,,,, v I X

(Global Scope) ~ @ main()
// This progam calculates the user's pay.
#include <iostream>

using namespace std;

=lint main()
double hours, rate, pay;

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin >> hours;

// Get the hourly pay rate.
cout << "How much do you get paid per hour? ";
cin >> rate;

// Calculate the pay.
pay = hours * rate;

// Display the pay.
cout << "You have earned $" << pay << endl;
return @;

B
100% -

Ready Ln23

@ o-e2d®
Search Solution Explorer (Ctrl+, L ~

Gross Pay

b =3 External Dependencies
= Header Files
=5 Resource Files

4 &) Source Files
b ++ GrossPay.cpp

> b«

Solution Explorer Team Explorer

Properties B
main VCCodeFunction v
o8] &

(Name)
File c:\users\tony\d

main -
FullName main
IsInjected False

(Name)
+ Sets/returns the name of the object.

Col 2 Ch2 INS

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

SKarteg oot wih >>> o

. From Coatrol Structures
through Objects

1.4

What is a Program Made of?

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

What is a Program Made of?

2 Common elements in programming
languages:
2> Key Words
*Programmer-Defined Identifiers
2 Operators
2 Punctuation
2 Syntax

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Program 1-1

16

// This program calculates the user's pay.
#include <iostream>
using namespace std;

int main()

{

double hours, rate, pay;

// Get the number of hours worked.
cout << "How many hours did you work? "
cin >> hours;

-

// Get the hourly pay rate.
cout << "How much do you get paild per hour? ";
cin >> rate;

// Calculate the pay.
pay = hours * rate;

// Display the pay.
cout << "You have earned $" << pay << endl;
return 0;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Key Words

» Also known as reserved words
»Have a special meaning in C++

» Can not be used for any other purpose

»Key words in the Program 1-1: using,
namespace, int, double, and return

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Key Words

// This program calculates the user's pay.
#include <iostream>

=

N

(62 B = OV]

16

NN NN
w N = O\

Gintmain()

{

}

hours, rate, pay;

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin >> hours;

// Get the hourly pay rate.
cout << "How much do you get paild per hour? ";
cin >> rate;

// Calculate the pay.
pay = hours * rate;

// Display the pay.
cout << "You have earned $" << pay << endl;

@etur 05

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Programmer-Defined ldentifiers

*Names made up by the programmer
»Not part of the C++ language

» Used to represent various things: variables
(memory locations), functions, etc.

»In Program 1-1: hours, rate, and pay.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Operators

» Used to perform operations on data

»Many types of operators:
»Arithmetic-ex: +, -, *, /
»Assignment — ex: =

» Some operators in Program1-1:
<< >> = %

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Operators

16

NN NN
W N = O\

// This program calculates the user's pay.
#include <iostream>
using namespace std;

int main()

{

double hours, rate, pay;

// Get_the number of hours worked.
cout‘sa "How many hours did you work? ";

cin @ hours;

// Get_the hourly pay rate.
cout "How much do you get paid per hour? ";

cin(>>)rate;

// Calculate-_the pay.
pay hours rate;

// Display the pay.
cout(:fS"You have earned $"(::)pay(::)endl;
return 0;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Punctuation

» Characters that mark the end of a
statement, or that separate items in a list

*In Program 1-1: , and ;

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Punctuation

16

NN N

W N = O

// This program calculates the user's pay.
#include <iostream>
using namespace std;

int main()

{

double hour@rat@a@

// Get the number of hours worked.
cout << "How many hours did you work? (:)

cin >> hour€:)

// Get the hourly pay rate.
cout << "How much do you get paid per hour? C:)
cin >> rat

// Calculate the pay.
pay = hours * ratq:)

// Display the pay.
cout << "You have earned §$" << pay << end(:)

return q:)

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Syntax
» The rules of grammar that must be
followed when writing a program

» Controls the use of key words, operators,
programmer-defined symbols, and
punctuation

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Variables

» A variable is a named storage location in
the computer’'s memory for holding a piece

of data.

»In Program 1-1 we used three variables:
The variable was used to hold the
hours worked

*The variable was used to hold the pay
rate
The variable was used to hold the gross

pay

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Variable Definitions

» To create a variable in a program you

must write a variable definition (also called
a variable declaration)

»Here is the statement from Program 1-1
that defines the variables:

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Variable Definitions

» There are many different types of data,
which you will learn about in this course.

» A variable holds a specific type of data.

» The variable definition specifies the type of
data a variable can hold, and the variable
name.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Variable Definitions

» Once again, line 7 from Program 1-1:

» The word double specifies that the

variables can hold double-precision
floating point numbers. (You will learn
more about that in Chapter 2)

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Kanieg oot wih >>> -

. From Coatrol Structures
through Objects

1.5

Input, Processing, and Output

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Input, Processing, and Output

Three steps that a program typically
performs:
Gather input data:

from keyboard
from files on disk drives

Process the input data

Display the results as output:
send it to the screen
write to a file

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Staneg oot wih >>> o

o From Coatrol Structures
through Objects

1.6

The Programming Process

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

The Programming Process

1. Clearly define what the program is to do.
. Visualize the program running on the computer.
3. Use design tools such as a hierarchy chart, flowcharts,
or pseudocode to create a model of the program.
4. Check the model for logical errors.
Type the code, save it, and compile it.
6. Correct any errors found during compilation. Repeat
Steps 5 and 6 as many times as necessary.
Run the program with test data for input.
Correct any errors found while running the program.
Repeat Steps 5 through 8 as many times as necessary.
9. Validate the results of the program.

o

® N

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

From Coatrol Structures
through Objects

S
TONY GADDIS

Procedural and Object-Oriented
Programming

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

Procedural and Object-Oriented
Programming

» Procedural programming: focus is on the
process. Procedures/functions are written
to process data.

» Object-Oriented programming: focus is on
objects, which contain data and the means
to manipulate the data. Messages sent to
objects to perform operations.

@ Pearson Copyright © 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved.

