10/23/18

B 5 Boolean and Logical Operator

« In C++ logical data declared as bool data type
e.g.

bool variable_name;
03: CONTROL STRUCTURES
« There are only two values: true and false
» Type-casting bool to int:
. . ¢ true => 1
Programming Technique | . false => 0

(5CsJ1013) Example

int number;
number = 2 + true;
cout << number; //output: 3

innovative e entrepreneurial » global w.utm.my innovative » entrepreneurial e global

) /Boolean and Logical Operator y ;
P P Boolean and Logical Operator

« Type-casting int to bool:

. AZerovalue => false What would be printed by this code segment

e ANon-Zero value => true bool b;
int p;
false
int g = 5;
true true
Y b = q;
(‘) p = b;
cout <<“The value of p is “ << p <<endl;
Example:
Output:
bool b = false; // b initially is false
int number = 0; The value of p is 1
b = -10; true
b = number; // Here, b is false again

innovative e entrepreneurial » global www.utm.my innovative » entrepreneurial e global

/ Logical operators truth table @U /
, not !
X i X Operations for logical and/or
false true zero
true false nonzero
logical C Language
and &&
x Y X&&Y X Yy X&&Y
false | false | false zero zero 0 false && (anythlng) true | | (anythlng)
false true false zero |nonzero | 0
true false | false nonzero | zero 0
true true true nonzero |nonzero | 1
logical C Language
or |
x y x|y x y x|y
false false | false zero zero 0 false true
false true true zero |nonzero 1
true false true nonzero | zero 1
true true true nonzero |nonzero | 1
logical C Language

Y Relational operators
Operator Meaning

< less than
<= less than or equal

> greater than

= greater than or equal
== equal

= not equal

10/23/18

Logical expression

Example:

int a=10;

cout << (a==1) ; |Prints0.1s 10==12 =>false =>0 |

cout << (o) /[]

cout << (a=5) ; | Prints 5. This is not a logical
expression. It is an assignment.

expression.
a= (a'=5);

out << a; [FE0EIST e]

Logical operator complements

< complement >=

> __complement

> | <=

complement 1=

« Another way to complement an expression is just putting a Not
operator (!) in front of it.

Example: Complement of n==0 is
1 (n==0)

e o entrepreneurial e global

ve » entrepreneurial e global

y . When to use complement?

Example 1:

Solution:

Complement the

condition.

!(n==0) or n!=0
In order to convert g @
the flowchart to
C++ code, this part > No (False) True
must be a “Yes
(el Print

N Yes (True) Print Fase

innovative entrepreneurial e global

@nt™ /

« When to use complement?

Example 2:

number = 10

The iteration
part must be a
True
’ True
False

number = number -1

Solution:
Complement the
condition.

!(number<1) or
(number >=1)
False
v

7

gEM/ Selection / Branch
+ Sometimes your programs need to make logical choices.
+ Example:
IF score is higher than 50
THEN grade is PASS
ELSE grade is FAIL

* In C++, this corresponds to i£ statement with three parts:

if (score > 50) //part 1
{

grade = PASS; //part 2
}
else
{

grade = FAIL; //part 3
}

10/23/18

©UTM

if statement ~ if statement

Part 2 : the TRUE-PART lock of statements that are executed if

» Part 1 : the condition - an expression that evaluates to true e conditoniovaluntes maees

or false.

v if (score >§0)

it (score > 50) @ S p— { oo |
{ grade = PASS; Yes»| grade =PAss

grade = PASS; No

) No
else *

else grade = FAIL

{ {

grade = FAIL; grade = FAIL;
} }

« entrepreneurial e global

innovative » entrepreneurial e global

@uUT™ if statement OUIM

+ Part 3 : the FALSE-PART,- a block of statements that are
executed if thegcondition\gvaluates to false

if statement

* Sometimes there is no FALSE-PART. The “else” is
} No {

omitted
if (score > 50
(VW
if (attendance < 0.8) Sitendance <0.8
else \ 4 exam_grade = FAIL;
grade = FAIL;

grade = PASE;
1

if the condition
evaluates to false,
the TRUE-PART is skipped.

innovative e entrepreneurial » global www.utm.my innovative » entrepreneurial e global

UT
g; / if statement

if statement

« If the TRUE-PART (or FALSE-PART) consists of only * Sometimes there are more than two parts. In those
one statement, then the curly braces may be cases you may use nested if-else statements:
omitted.

if (score > 90) ns
letter_grade = 'A'; M

« Example: these two statements are equivalent:

else if (score > 75) X
if (score > 50) letter_grade = 'B';
»

(if (score > 50)
grade = PASS;

grade = PASS; letter_grade = 'C'; ves
else
} M

else if (score > 50)
grade = FAIL;

Y
else letter grade = 'D'; @ ’
- Yes- letter_grade =D
. . ' [
o

else if (score > 60)

grade = FAIL; letter grade = 'F';
-\mum -F
}

No

r= !
@ V55+
1

1
C
1
1
1
1

No

b4
Ves*

1
I
1
I
I
I
1 o
1
I
I
I
1
1

I
o 1
I
I

innovative e entrepreneurial » global

Let’s look closer

It is actually a regular if-
else with the FALSE-PART is If (score>50)

another if-else statement {

letter_grade = *

}

else {

+ A compound statement is

one or more statements that are

grouped together by enclosing them in brackets , {}.

« Example:

cout <<

{

value =

cout <<

if (value>0)

value = value * 2; a single statement

if (value>10)

This is a single statement. The
t

value; belongs t o

10;

value;

This is a compound
statement which
consists two single
statements.

—

Related issues

« But be careful when converting mathematical comparisons. Some of
them are not straight forward

if (2<x<9)
cout << x;

Example: Print x only if (2<x<9)

There is no syntax error, but this leads to a logic
error due to the misinterpretation.

The condition always evaluates to true, whatever
the value of x

Correction:

Let say x=1 Let say x=5
(2<x<9) (2<x<9)

= (2<1<9) = (2<5<9)
= (£alse<9) = (true<9)
= (0<9) = (1<9)
—=true —=true

cout << x;

if ((2<x) && (x<9))

©UTM if statement

e Three forms of if statements

£ (conditi
are shown at the next table. if(condition)

statement;

« The condition must be placed in
parentheses

if (condition)
{ statement;

« Statement may exist either as a
single statement or as a }

statement;

collection of statements (also
called compound statement)

if (condition)
{ statement;
1
statement;

}
else

{ statiment;

statement;

) .
Related issues

« The condition must be placed in parentheses

Example:

if (0<x) && (x<10)
cout << x;

//syntax error

Correction:

if ((0<x) && (%<10)) // piace b0

// a parenth

cout << x;

innovative » entrepreneuri

—

« The condition must evaluate to a Boolean value (i.e. either true or
false)

Related issues

« There are only two types of expression that result a Boolean value
o Comparison expression (e.g. a>2
o Boolean expression (e.g. b && false)

« If the result of the condition is not a Boolean, it will be type-casted

The condition evaluates to

0. It then is type-casted to
Example: / Boolean, becomes false

int n
if (n) Output:

else
cout << “No”;

innovative » entrepreneurial e global

10/23/18

' Example: '

The condition evaluates to Example: Remember! This is an assignment
5. It then is type-casted to expression, not an equality.
/ Boolean, becomes true The value of the expression s 0. It then is
3 . type-casted to Boolean, becomes false.
int n=0; The result is always false.
if (n + 5) int x=0:
cout << “Yes”;
else q
cout << “No”; 9 =0 “ ”
cout << “Yes”;
else
cout << “No”;

innovative » entrepreneurial e global

o entrepreneurial o

, —

Example:

Remember! This is an assignment
expression, not an equality. Example:

The value of the expression is 10. It then Remember! This is an assignment
expression.
is type-casted to Boolean, becomes true
iThelresulisialvaysuue] The condition always evaluates to true .
The value of y is changed to 5 due to the
side-effect caused by the assignment

operator
if (y=10) Output:
cout << “Yes”;)
else if (y=5) Output:
cout << “No”; cout << y

innovative » entrepreneurial e global

innovative e entrepreneurial » global

ou J OUTM
” Related issues /

Example:
« Be careful when using the Boolean operator NOT (!) int n=5; (! (n>9))
bed = (1 (n>9))
Example: i . / = (1(5>9))
int n=5 Operator ! has higher precedence then operator 8 (020D = (0 fEnen))
in n=5; : w " .
! >. So, itis executed first. cout << “Yes”; = (!false)
/ else = true
if ('n>9) ny;;;e(siizd-f,:m,; evaluated :PL(_: true wnevin: cout << “No”;
cout << “Yes”; The result is false '

else
The expression is further evaluated as (false>9).
cout << “No”; The false value is then type-casted to 0, since it will Output:
be compared with an integer. The expression then
looks like (0 > 9) and the final resuit is false

Output:

innovative » entrepreneurial e global

innovative e entrepreneurial global

10/23/18

” Related issues ” Example:
« Statements should be indented correctly to avoid misinterpretations if (x<y) Syntax error - misplace else
y p cout << x; There must only be a single statement
’ before else. If more than that, use a
Example: Let say x=1 X =Y/ compound statement.
; Condition =» true Let say x=3 else
if (%<3) Condition => false o 23
cou ;
cout <<"Yes" << endl; Output: Output: b4
cout <<"No" << endl; Yes
No
The second cout doesn’t belong Correction:
to if statement. It is on its own "
but was indented incorrectly. if (x<y)
{
Correction: cout << x;
if (%<3)) X =y,
cout <<"Yes" << endl;
else
cout << y;
cout <<"No" << endl;

innovative e entrepreneurial » global w.utm.r innovative » entrepreneurial e global

4 xample: 4
’ Print x only if it is an odd number less than 10, otherwise print “Wrong number” ’ .
Related issues

if (x%2==1) Letsayx=7, Letsayx=11,
if (x<10) Output: Output:
+ « Null statements are statements that do nothing
cout <<x;
else .
Correct! Correct! Example: The semi-colon represents a null

W ",
cout << “Wrong number”; statement. Either the condition
evaluates to true or false, there is

nothing to do.

But, when x=12,
There is no syntax error, but this leads to a logic There is no output. This is incorrect.
error due to the misinterpretation. It suppose to print “Wrong numbez”

The cout doesn't belong to 1€

. The statement has
already been ended up with semi-
colon previously.

The else part actually belongs to the second if (1.£
10)), not to the first one

Correction: use brackets {} The output is always:
if (x%2==1)
{

if (x<10)
cout << x;
}
else
cout << “Wrong number”;

innovative e entrepreneurial » global

Simplifying if statements

Let say x=5, Let say x=1,
Example: Output: Output:
« Simplifying conditions:
| No I Yes
No Original statement Simplified statement
if (x<3)

if (a '= 0
cout <<"Yes“ <<endl; 8 ¢)

if (a)
statement;

> statement;
else; < i The semi-colon represents a null I
N/ tate
co <<“No” <<endl; Seenen
This cout: doesn’t belong to else

if (a > 0)
statement;

if (a < 0)
statement;

if (a == 0) —— [£ ('3)

statement; statement;

innovative » entrepreneurial e global www.ut innovative » entrepreneurial e global

Simplifying if statements

« Example 1 : print a number only if it is an odd number

Original statement

if (n%2==1)
cout << n;

« Example 2: print a number only if it is an even number

simplified statement

Original statement simplified statement

0) ig (1(n%2)

cout << n;

if (N

cout << n;

ive e entrepreneurial o globa

10/23/18

Simplifying if statements

« Conditional Expressions:

innovative e entrepreneurial e global

a==b?c——:ctt

(b) Code

(a) Logic Flow

" Simplifying if statements

«Conditional Expressions:

If the condition is
true, take the value1

If the condition is
false, take the value2

Syntax: Icondition ? valuel : value2
Example: i
p This statement if (p<5)
p=qg+1;
Ip = (p<5) » q+1 :5;|$} e
p=5;

switch statement

’ « If there are many nested if/else statements, you may be able
to replace them with a switch statement:

switch (letter_grade)
{

if (letter_grade == 'A'") case 'A' : cout <<"Excellent!";
cout << “Excellent!"; rea
else if (letter grade == 'B')
cout << "Very good!"; case 'B' : cout <<“Very good!";
else if (letter grade == 'C') > P
cout << "Good";
else if (letter grade == 'D') cren 1@ 8 cEnl @R
cout << "Adequate"; b X
reak;
else
cout << "Fail";
case 'D' : cout <<"Adequate";
break;
default : cout <<"Fail";

break;

—

switch (expression)

{

case valuel: statements_l;
break;

switch statement

How the switch statement works?
1. Check the value of expression.

8 GRERETIRGE 88 2. Isitequal to valuet?
break; = - If yes, execute the
statements_1 and break out
of the switch.
- If no, is it equal to value2?
etc.

case value2

default : statements;

break;

3. Ifitis not equal to any values of
the above, execute the default
statements and then break out of
the switch.

ve o entrepreneurial e globa

’ Example 1:

it is equal to this
case-value (i.e.
1==1). So,
execute the
statements of
‘case 1’

innovative » entrepreneurial e global

switch statement

int value = 1;

evaluates to 1

switch (value)

{
1: cout << “One”; <__an> One
break;
case 2: cout << “§wo”;
break;
default : cout < “Neither One nor Two”;

Output:

One

©OUTM
’ Example 2:

it is not equal to
this case-value (i.e.
21=1). So, skip the

switch statement

int value = 1; this expression
evaluates to 2

switch (value + 1)

{

1: cout << “One”;

of ‘case
1"and move to the
next case.

case-value (i.e
2=22). So,
execute the
statements of
‘case 2

innovative e entrepreneurial » global

it is equal to this [y}

break;

cass 2: cout << “Two”;
break;
break out of the switch

leither One nor Two”;

default

Output:

Two

10/23/18

©OUIM
—

Example 3:

The switch
expression (i.e. 5)
is not equal to
both cases (i.e
5!=1 and 5!=2)
So, their

statements are

When the ‘default
case’ is reached,
its statements are

switch statement

int value = 5;

’
switch (value

{

casg,1l: cout << “One”;
break;

cas?Z: cout << “Two”;
break;

'default : cout << “Neither Qne nor Two”;

Prints Neither
One nor Two

break.
] < & | break out of the switch

Output:

Neither One nor Two

©OUIM

What if the break
statement is not
written?

it is equal to this
case-value (i.e.
1==1). So,
execute the
statements of the
‘case 1.

innovative e entrepreneurial » global

o] No &

switch statement

int value = 1;
switch (value)
{

ﬁl: cout << “One\n

statement here. So,
no break out and move to the
next line.

case 2: cout << “Two\n”g
break;

break out of the switch

ut << “Neither One nor Two\n”;
reak;

default :

Output:

o/

« The following

innovative o entrepreneurial e g

RE e
a literal is OK
ca DEFINE
/
constant is OK caseggonst2

amemory
constant is OK

Error! case-
cannot be a variable

switch statement

’ The case-value must be a constant (literal, memory or defined constant)

example would be an error

void main ()

{

#define DEFINE 1
const int const2=2;
int var3 = 3;

int value;

switch (value)

: cout << "Four";
break;

: cout << "One";
break;

: cout << "Two";
break;

: cout << "Three";

break;

alue

)]

innovative e entrepreneurial e global

©UTM
—

switch statement

« The switch expression must be of integral type (i.e. int, char,bool).
« The following examples would be an error

void main ()

float point=4.0;|
int mark;

switch (point)

case 4

: mark = 100; case "Ali" : mark=95;
break; break;

case 3.7 : mark = 80; case "Aminah": mark=90;
break; break;

default default : mark=50;
break;

void main ()
{

char name[]="Ali";

Error! The switch
expression cannot

€3 rdy Error! The switch

be a £1oat value expression cannot

be a string value

switch (name)

innovative » entrepreneurial e global

©UTM

Pattern 1

P /I'ranslating flowchart to C++ code

if (condition)

{
statement;
}
True
statment False
\

innovative » entrepreneurial e global

10/23/18

@UTM/ Translating flowchart to C++ code
o

Example 1: Printing a number only if it is a negative

if (n<0)
{
cout << n;

}

True

False

ive e entrepreneurial o globa

—

Pattern 2

True»| statment_1

False

v

statment_2

l‘i

innovative e entrepreneurial e global

Translating flowchart to C++ code

if (condition)
{
statement_1;
}
else
{
statement_2;

}

©OUIM / Translating flowchart to C++ code

Example 2: If two numbers (p and q) are equivalent reset them to zero,
otherwise exchange or swap their value each other and then print the
new values.

else
{
-

exchange (&p, &q) ;
cout << p << q;

 entrepreneurial

’ Pattern 3

« entrepreneurial o global

©UTM / Translating flowchart to C++ code

if (condition_1)
{
statement 1;
}
else if (condition_2)
{
statement 2;
}
1
1
1
else if (condition_n)
{
statement n;
}
else
{
statement m;
)]

©UTM Translating flowchart to C++ code

Example 3: Identifying the grade of a score

B

if (score > 90)

Ceoroon mH ¢
grade = 'A';

False }
X else if (score > 75)
@ S (
grade = 'B';

False }

else if (score > 60)
- mH (
grade = 'C';

False }
else if (score > 50)

grade = 'D';

False }

+ else
{
grade = 'F';

’ Pattern 4

The conditions must be in this form:

expression == value

False

False

@UTM / Translating flowchart to C++ code

switch (expr)

case val_1 : statement 1;

break;

case val_2 :
| break;

statement_2;

case val n : statement n;

break;
default: statement_m;

break;

10/23/18

@HTM Translating flowchart to C++ code

" Example 4: Printing the description of a grade.

m, switch (grade)

False case 'A' : cout << "Excellent!";
break;
(o m,
case 'B' : cout << "Very good!";
False break;
True- oo
S0 case 'C' : cout << "Good";
break;
False
case 'D' : cout << "Adequate";
break;
Fal i
bl default : cout << "Fail";

break;
}

actions.

: Loop / Repetition

« The main idea of a loop is to repeat an action or a series of

4

An action or a
series of actions

ve » entrepreneurial e global

The concept of a loop

Loops

« But, when to stop looping?

« In the following flowchart, the action is executed over and over
again. It never stop - This is called an infinite loop

« Solution - put a condition to tell the loop either continue
looping or stop.

A4

An action or a
series of actions

e o entrepreneurial e global

* Aloop has two parts - body and
condition

+ Body - a statement or a block
of statements that will be
repeated.

+ Condition - is used to control
the iteration - either to
continue or stop iterating.

innovative » entrepreneurial e global

Loops

—

True Body

False

: Types of loop
4 « Two forms of loop - pretest

loop and post-test loop. Pretest loop

Pretest loop

— the condition is tested first,
before we start executing the
body.

* Here must b¢ a

Az

— The body is executed if the True “
condition is true.

) Body False
— After executing the body, the
loop repeats

oM J
' * Post-test loop

— the condition is tested later,
after executing the body.

— If the condition is true, the
loop repeats, otherwise it
terminates.

— The body is always executed
at least once.

Types of loop

Post-test loop

!

True Body

The iterating part
must be a “True”

10

Parts of a loop

4 « Beside the body and condition, a loop may have two other parts -

Initialization and Updating

Pretest loop Post-test loop

True

Updating
Updating

False

ive e entrepreneurial o globa

10/23/18

eum /

’ + Initialization

— is used to prepare a loop before it can
start -usually, here we initialize the
condition

Parts of a loop

Initialization

— The initialization must be written
outside of the loop - before the first
execution of the body.

True
« Updating
— is used to update the condition
— If the condition is not updated, it
always true => the loop always repeats
- an infinite loop

— The updating part is written inside the
loop - it is actually a part of the body. False

innovative e entrepreneurial e global

OUTM Parts of a loop
' Example: These flowcharts print numbers 10 down to 1

Post-test loop

13120 1 50T Sty
“ thelloop “

Pretest loop

True

9

Tue

False
el £y time the loop
repeats, n s updated

:
i

False

 entrepreneurial

» C++ provides three loop statements:

Loop statements

loop
statements

while for do...while

pretest loop pretest loop post-test loop

C++ loop constructs

« entrepreneurial o global

—

while statement

while flowchart
while (Condition)
{
Repeated Actions;
} True
v
Repeated_Actions

=

ve o entrepreneurial e globa

False

®UT™ while statement

’ Example: This while statement prints numbers 10 down to 1

Note that, the first line (n=10) is
actually not a part of the loop statement.

n=10;

while (n>0)

{
cout << n <" %
n=n-1;

Output:

10 987 654321

innovative » entrepreneurial e global

11

for statement

©OUTM
v 7

for flowchart

Initialization

for (initialization; Condition; Updating)
{

Repeated Actions;

True

Updating

False

innovative e entrepreneurial » global

10/23/18

@UTM/ for statement
' Example: This for statement prints numbers 10 down to 1

for (n=10; n>0; n=n-1)
{
cout << n <™ %,

Output:

10 987 654321

@UTM/ for vs. while statements
for ([initialize ; |
while (expression) | — T |

; update)

EJ

|

action {

action
update .

}/* while */ } 7+ for*/

Comparing for and while loops

innovative e entrepreneurial » global

ovative e entrepreneurial o global

—

do..while statement

v
do

True Repeated_Actions
{

Repeated Actions;
} while (Condition);

False

OUTM /' do..while statement
’ Example: This do..while statement prints numbers 10 down to 1

Note that, the first line (n=10) is
actually not a part of the loop statement.

n=10;

do

{
cout << n << “ %
n=n-1;

} while (n>0);

Output:

10987 654321

innovative » entrepreneurial e global

o

« If the body part has only one statement, then the bracket
symbols, { } may be omitted.

Loop statements

Example: These two for statements are equivalent.

for (n=10; n>0; n=n-1) for (n=10; n>0; n=n-1)

{ cout << n;
cout << n;

}

12

OUTM Jump statements

* You have learn that, the repetition of a loop is controlled by the
loop condition.

« C++ provides another way to control the loop, by using jump
statements.

« There are four jump statements:

Jump
Statements

break continue return goto

10/23/18

” Breaking Out of a Loop

* Can use break to terminate execution of a
loop

* Use sparingly if at all — makes code harder to
understand

* When used in an inner loop, terminates that
loop only and returns to the outer loop

OUTM break statement
—

« It causes a loop to terminate

Example:

for (n=10; n>0; n=n-1) Output:
{

if (n<8) break; 10 9 8

cout << n << “
}

©UTM break statement

while (condition)
¢

The break statement takes

you out of the inner loop
(the for loop). The while
loop is still active.

if (otherCondition)
break;

} /* for */

/% re while cessing */
/* more while processing */

} 7% while */

break an inner loop

¥~ The continue Statement

* Can use continue to go to end of loop and
prepare for next repetition
— while and do-while loops go to test and
repeat the loop if test condition is true
— for loop goes to update step, then tests, and
repeats loop if test condition is true
* Use sparingly — like break, can make
program logic hard to follow

®UT™ continue statement

' * Inwhile and do..while loops, the continue statement transfers the
control to the loop condition.

* In for loop, the continue statement transfers the control to the
updating part.

while (expression) do

{

for (exprl; expr2; expr3)

} /% while * } while (expression) ; } /% for *

continue;

il

The continue statement

13

Example:

continue statement

for (n=10; n>0;
{

}

n=n-1)

if (n%2==1) continue;
cout << n K™

Output:

10 8 6 4 2

e o entrepreneurial » globa

10/23/18

Example:

continue statement

n = 10;
while (n>0)
{

cout << n

n=n-1;

}

<< N v
if (n%2==1) continue;

innovative » entrepreneurial e global

Output:

The loop then prints number 9
over and over again. It never
stops.

—

return statement

* You will learn this statement in Chapter 4 - Function.
« It causes a function to terminate.

Example:

Void print_numbers ()
{ int n=10;
int

while (n>0)
{
for (i=n;i>0; i--)

{

if (i%2==1) continue;

if (i%4==0) break;

if (n==6) return;

<<io<<™ N

cout << endl;
n=n-1;

Output:
10

The continue statement

transfers control to the

updating part (i~)
6

The break statement
terminates the for loop.

The retumn statement
terminates the function
and returns to the caller.

P

return statement

{

float calc_point3(char grade)

£loat result;

switch (grade)

{

case 'A': result = 4.0;
break;

case 'B': result = 3.0;
break;

case 'C': result = 2.5;
break;

case 'D': result = 2.0;

break;

default: result =0.0;

return result;

float calc_pointd (char grade)

{

switch (grade)

{
case 'A': return 4.0;
case 'B': return 3.0;
case 'C': return 2.5;

case 'D': return 2.0;

return 0.0;

The break statement of each
case may be omitted. It has
never been reached.

©UTM
—

+ When to use return?
* Example: the following functions are equivalent

return statement

{
float result;

else result =

1

return result;

0.0;

float calc_point(char grade)

if (grade=='A') result = 4.0;

else if (grade=='B') result = 3.0;
else if (grade=='C') result = 2.5;
else if (grade=='D') result = 2.0;

float calc_point(char grade)
{

if
if

') return 4.0;

if
if

a
B') return 3.
C') return 2.
D

'), return 2.0;

return 0.0;

The else part of each if
statement may be omitted.
has never been reached.

program.

Example:

innovative » entrepreneurial e global

goto statement

It is used to translate connector symbols - jump to another part inside a

gy,

+ But, it is not recommended to use - it may cause unstructured programs.

n=10;
A:
cout <<n << “;

n=n-1;

if (n>0) goto A;

——_'

Output:

10 987 654321

14

@UTM / Translating flowchart to C++ code
’ Pattern 1

Here musz bea

while (condition)
{

& Repeated Actions;
True }

Repeated_Actions
L T l—‘

entrepreneurial » globa

10/23/18

©UT™ / Translating flowchart to C++ code
’ Example: Calculate the average of odd numbers 1 to 9

sum = 0;
i=1;
0 while (i<11)
{
True sum = sum + i;
False }
‘ avrg = sum/5.0;

!

OUTM / Translating flowchart to C++ code

' Pattern 2

v
do
True Repeated_Actions (

Repeated Actions;

} while (condition) ;

The iterating part
must be a “True”

False

innovative e entrepreneurial » global

innovative e entrepreneurial e global

©OUIM / Translating flowchart to C++ code

’ Examp[e. Prints numbers 1 to 10

i=1;

do

{

cout <<i <<endl;
i=41i+1;

} while (i<11);

False

@QTM / Translating flowchart to C++ code
’ Pattern 3

innovative » entrepreneurial e global

for (initialize; condition; update)

!
Repeated_Actions;
}
or
True
initialize;

while (condition)

Repeated_Actions

False {
Repeated Actions;
update;

}

©GUT™ / Translating flowchart to C++ code

’ Example: Print the total of numbers 1 to 10

total = 0;
for (i=1; i<1l; i++)

i {

total = total + i;
}
cout <<total;

or

True total = 0;

* i=1;
total =total +i
[wmile ()
False
{

i++;

}
cout <<total;

15

’ Deciding Which Loop to Use

* while: pretest loop (loop body may not be
executed at all)

e do-while: post test loop (loop body will
always be executed at least once)

e for: pretest loop (loop body may not be
executed at all); has initialization and update
code; is useful with counters or if precise
number of repetitions is known

10/23/18

" Nested Loops

* A nested loop is a loop inside the body of
another loop

* Example:
outer loop
for (row=1l; row<=3; row++)
{ inner loop
for (col=1; col<=3; col++)
{

cout << row * col << endl;

} —

©UTM

b Notes on Nested Loops

* Inner loop goes through all its repetitions for
each repetition of outer loop

* Inner loop repetitions complete sooner than
outer loop

* Total number of repetitions for inner loop is
product of number of repetitions of the two
loops. In previous example, inner loop
repeats 9 times

* How many times the outer loop is executed? How
many times the inner loop is executed? What is the
output?

#include <iostream>

In-Class Exercise

using namespace std;
int main ()
{ int x, y;
for (x=1;x<=8;x+=2)
for (y=x; y<=10; y+=3)

cout<<"\nx = " <<x << " y = "<<y;
system ("PAUSE") ;

16

