

TEST 2

SEMESTER I 2017/2018

SUBJECT CODE : SCSR 1013

SUBJECT TITLE : DIGITAL LOGIC

DATE : 24 November 2017

TIME/DURATION : 9:00am – 11:15am [2 HOURS 15 MINS]

VENUE : DK1, 2, 3, L50

MARKS/PERCENTAGE : 100 MARKS [25%]

INSTRUCTIONS TO CANDIDATES:

- 1. There are 2 PARTS. Answer ALL questions in the answer booklet, EXCEPT;
- 2. Answer question 1 (c) in Part B in this question booklet.

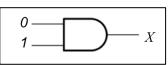
Name	
Matric No.	
Year/Programme	Section
Lecturer (CIRCLE)	FIROZ HAZINAH MARINA MOHD FO'AD MUHALIM RAJA ZAHILAH

This questions paper consists of (7) printed pages front and back, EXCLUDING this page.

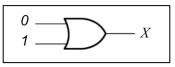
PART A

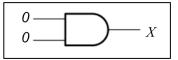
- 1. Which basic logic gate whose output is the complement of the input?
 - A. NOT gate
 - B. NAND gate
 - C. OR gate
 - D. AND gate
- 2. Which logic gate will have a HIGH output when any of its inputs is HIGH?
 - A. NOR gate
 - B. OR gate
 - C. AND gate
 - D. NOT gate
- 3. What is the Boolean expression for a three-input AND gate?
 - A. X = A + B + C
 - B. X = A B C
 - C. $X = A \cdot B \cdot C$
 - D. X = A \$ B \$ C
- 4. Logically, the output of a NOR gate would have the same Boolean expression as _____.
 - A. an inverter immediately followed by an AND gate
 - B. an inverter immediately followed by an OR gate
 - C. a NAND gate immediately followed by an inverter
 - D. an OR gate immediately followed by an inverter
- 5. For a three-input NOR gate, what is the only condition of inputs A, B and C that will make the output HIGH?
 - A. A = 0, B = 0, C = 0
 - B. A = 1, B = 1, C = 1
 - C. A = 1, B = 0, C = 0
 - D. A = 0, B = 0, C = 1
- 6. Which of the expressions below expresses the commutative law of multiplication?
 - A. A + B = B + A
 - B. AB = B + A
 - C. AB = BA
 - D. AB = A/B

7. Which of the expressions below expresses the distributive law?


- A. (A + B) + C = A + (B + C)
- B. A(B+C) = AB + AC
- C. A + (B + C) = AB + AC
- D. A(BC) = (AB) + C

8. Which of the following diagram proves the Boolean Algebra rule $A + \overline{A} = 1$?


A.


C.

B.

D.

9. Which Boolean Algebra rule is false?

- A. A + 0 = A
- B. A + 1 = 1
- C. $A \cdot A = 1$
- D. $A \cdot 1 = A$

10. Simplify the expression $\overline{\overline{(AB)}} + C$ using DeMorgan's Theorems.

- A. (A+B)C(A+B)C
- B. $\overline{\overline{AB}} + C$
- C. $AB\overline{C}$
- D. $AB + \overline{C}$

11. Choose the expression that is not in standard form.

- A. $\overline{A}B\overline{C}D$
- B. $\overline{A}BC + A\overline{B}C$
- C. $(\overline{A} + B)(A + \overline{B})(\overline{A} + B)$
- D. $(A+B+\overline{C})(A+\overline{B}+D)$

12. Which of the following terms is a standard SOP form?

A.
$$(A+B+\overline{C}+D)$$

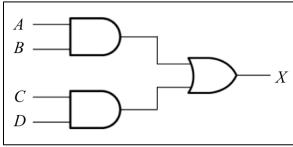
B.
$$A\overline{B}CD + \overline{ABCD}$$

$$C$$
: $(A+B+\overline{C}+D)(\overline{A}+\overline{B}+\overline{C}+\overline{D})$

D.
$$A\overline{B}CD + ABCD$$

13. Which binary value does not match any of the product term in $ABC\overline{D} + A\overline{BC}D + \overline{ABC}D$?

- A. 1110₂
- B. 1001₂
- C. 0101₂
- D. 0110₂

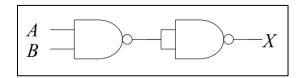

14. Which POS expression match the binary value of 001?

- A. $AB\overline{C}$
- B. $\overline{A}\overline{B}C$
- C. $A+B+\overline{C}$
- D. $\overline{A} + \overline{B} + C$

15. Which term is represented in $\mathring{a}_{ABC}(0,3,5,7)$?

- A. \overline{ABC}
- B. $A\overline{B}C$
- C. $\overline{A} + B + \overline{C}$
- D. $\overline{A} + \overline{B} + \overline{C}$

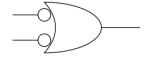
16. Choose the true statement about the AND-OR logic diagram.

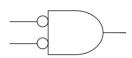


- A. It produces a SOP output expression.
- B. It produces a POS output expression.
- C. The output *X* is HIGH if both inputs *A* and *C* are HIGH.
- D. The output X is only HIGH when all inputs are HIGH.

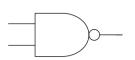
17. If an inverter is added to the output *X* of an AND-OR logic circuit, it will produce a _____.

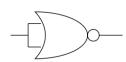
- A. POS for *X*
- B. SOP for X
- C. POS for \overline{X}
- D. SOP for \overline{X}


18. This logic symbol can function as a/an _____ gate.


- A. NAND
- B. NOT
- C. OR
- D. AND

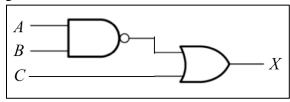
19. Which of the following logic symbol can be represented as an appropriate dual symbol for a NAND gate?


A.


C.

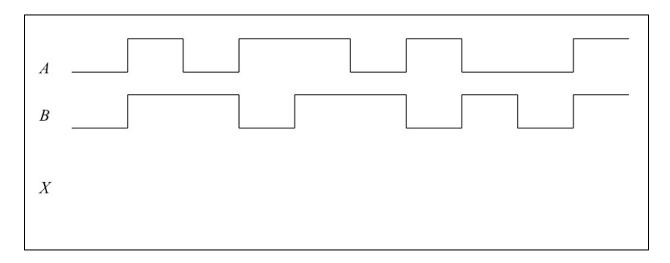
B.

D.



- 20. The appropriate dual symbol for a NOR gate is known as _____.
 - A. negative-OR
 - B. inverter
 - C. bubble
 - D. negative-AND

PART B


QUESTION 1 [20 MARKS]

a) Given the following logic circuit:

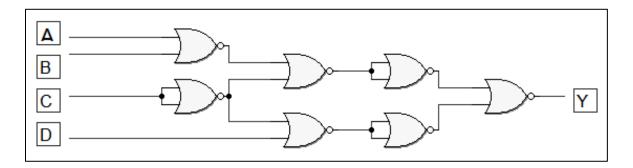
- (i) Identify the two logic gates used in the circuit. [1m]
- (ii) Get the Boolean expression for X. [2m]
- b) Give the complete truth table for XOR gate with 2 inputs and 1 output. [3m]
- c) Determine the XNOR gate output for the following input waveforms. Draw the timing diagram of the output *X* in the figure. [5m]

[Note: Answer this question in the diagram below.]

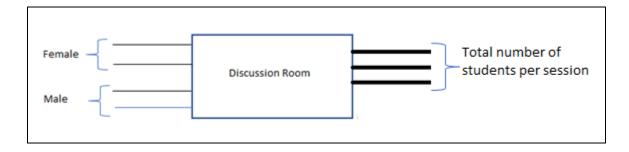
- d) Using Boolean Algebra, simplify the following expressions.
 - (i) $(A+C)(AD+A\overline{D})+AC+C$ [4m]
 - (ii) $\overline{A} \overline{B} C + (\overline{A + B + \overline{C}}) + \overline{A} \overline{B} \overline{C} D$ [5m]

QUESTION 2 [30 MARKS]

a) Convert the expression to its standard form. [4m]


$$X = (A + B + \overline{D})(\overline{A} + \overline{C})$$

- b) Given the expression $X = \tilde{O}_{ABC}(2,3,4,7)$;
 - (i) Construct the truth table for *X*. [5m]
 - (ii) Write the complete standard POS Boolean expression for X. [3m]
 - (iii) Write the complete standard SOP Boolean expression for *X*. [3m]
 - (iv) Construct the complete Karnaugh Map (K-Map) for the expression for X. [3m]
- c) Given the expression $Y = \overline{ABCD} + \overline{ABCD$
 - (i) Produce the simplified SOP expression using K-Map. [6m]
 - (ii) Redraw the K-Map to include the "don't care" conditions, d(10,11,12,13,14,15) and produce the new simplified SOP expression. [6m]


SCSR1013 DIGITAL LOGIC 2017/2018-1

QUESTION 3 [30 MARKS]

a) Redraw the logic diagram for the circuit below using the appropriate dual symbols to produce a circuit with the minimum number of basic gates only. [5m]

- b) A small discussion room with one table and five chairs is opened for students daily. For each session, maximum of 3 female and maximum of 3 male students can enter the room. The rules for using the room is as follows:
 - The room cannot be empty because there are always students waiting to use the room.
 - Single female student cannot enter the room.
 - Number of students allowed per session is minimum 2 and maximum 5.

- (i) Design a combinational logic circuit to <u>calculate the total number of students</u> in each session. Implement the circuit using the minimum number of NAND gates only. [22m]
 - Hint: Please use 3-input gates where possible.
- (ii) List down all the combinations of student's formation allowed for each session. [3m]