

TEST 2

SEMESTER I 2016/2017

SUBJECT CODE : SCSR 1013

SUBJECT TITLE : DIGITAL LOGIC

DATE : 18 November 2016

TIME/DURATION : 9:00am – 11:00am [2 HOURS]

VENUE : Exam Hall P16, FKE

MARKS/PERCENTAGE : 75 MARKS [25%]

INSTRUCTIONS TO CANDIDATES:

- 1. There are 7 questions. Answer ALL questions in the answer booklet, EXCEPT
- 2. Answer question 1 (c) in the Appendix and insert the Appendix inside your answer booklet.

Name	
Matric No.	
Year/Course	Section
Lecturer (CIRCLE)	ISMAIL FAUZI MARINA MOHD FO'AD MUHALIM RAJA ZAHILAH RASHIDAH

This questions paper consists of (3) printed pages front and back, EXCLUDING this page.

- 1. [10 MARKS] Using 2 inputs, A and B and 1 output, X,
 - a) Write the Boolean expressions X for NAND and NOR gates. [2m]
 - b) Construct the truth table for NAND and NOR gates. [4m]
 - c) Complete the NAND Timing Diagram in Appendix A. [4m]
- 2. **[8 MARKS]** Simplify the Boolean expression:
 - a) $Z = (\bar{A} + B)(A + B)$ using Boolean Algebra Rules. [4m]
 - b) $Z = \overline{(A\overline{B} + C)\overline{D}}$ using DeMorgan's theorems. [4m]
- 3. **[7 MARKS]** For Boolean expression $Y = AB(\overline{CD})$,
 - a) Construct the corresponding logic circuit using two-input basic gates only. [3m]
 - b) Construct the complete truth table. [4m]
- 4. **[10 MARKS]** A Boolean expression is written in the following notation:

$$X = \prod_{ABC} (1, 5, 7)$$

- a) Write the equivalent Boolean expression standard form. [2m]
- b) Construct the truth table for *X*. [4m]
- c) Use K-Map to produce the simplified POS expression of X. [4m]

- 5. **[6 MARKS]** Given an expression of $Y = \sum_{ABCD} (0, 2, 7, 8, 11, 13, 14) + d(3, 6, 10, 15)$, generate the simplified SOP expression using K-Map.
- **6. [9 MARKS]** WITHOUT using Rules of Boolean Algebra or DeMorgan's Theorem and:
 - a) Using only NOR gates, convert and simplify the circuit in Figure 1. [4m]

Figure 1: NOR gates circuit

b) Using only basic gates, simplify and convert the circuit in Figure 2. [5m]

Figure 2: NAND gates circuit

- 7. **[25 MARKS]** A shop wants to have a special sale where the customers would get a discounts of 20% and vouchers if they shop on special days, with the following terms:
 - Regular customers will get a discount when they shop on a weekend.
 - Staff members will get the discount if they shop at the end of the month.
 - Both types of customers will get additional voucher if their discount day falls on a public holiday.
 - In that year, there does not exist a day where all three events (weekend, end of the month and public holiday) falls on that day.

[Sebuah kedai ingin mengadakan jualan istimewa untuk pelanggannya dengan memberikan diskaun 20% dan baucer pada hari tertentu dengan syarat-syarat berikut:

- Pelanggan biasa akan mendapat diskaun jika mereka membeli-belah pada hujung minggu.
- Pekerja akan mendapat diskaun jika mereka membeli-belah pada hujung bulan.
- Kedua-dua pelanggan biasa dan pekerja akan mendapat tambahan baucer jika hari diskaun mereka jatuh pada cuti umum.
- Pada tahun itu tidak wujud hari di mana-mana ketiga-tiga peristiwa (hujung minggu, hujung bulan dan cuti umum) jatuh pada hari tersebut.
- (a) Design a combinational logic circuit for cashier machines in the shop to determine when the customers would receive the discount and vouchers.

[Hint: there are four inputs and two outputs variables.]

(b) Implement the circuit using NAND universal gates only. (There are no limit to the number of input wires you want to use).

APPENDIX A

ANSWER FOR QUESTION 1(c)

Name : _____

Matric No.:

Section : _____

Lecturer : _____

