

SCSI1013: Discrete Structures

CHAPTER 2

(Part 3)

SEQUENCE, RECURRENCE RELATIONS & RECURSIVE ALGORITHM

2017/2018 - SEM. 1: nzah@utm.my

SEQUENCE & RECURRENCE RELATIONS

Sequence

 A sequence is a discrete structure used to represent an ordered list.

• A sequence is a function from a subset of the set integers to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

Consider the sequence $\{a_n\}$, where

$$a_n = \frac{1}{n}$$

The list of the terms of this sequence, beginning with a_1 , namely

$$a_1, a_2, a_3, a_4, \dots$$

start with

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Recurrance Relations

- A recurrence relations (or recurrence) for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of sequence, namely, $a_0, a_1, a_2, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
- The information called the initial condition(s) for the recurrence must be provided to give enough information about the equation to get started.

Simple Recurrence Relation

- The simplest form of a **recurrence relation** is the case where the next term depends only on the immediately previous term.
- For example, given an initial condition, $a_1 = 3$, the list of terms a_1, a_2, a_3, \ldots , begin with 3, 8, 13, 18, 23, ..., is generated from a recurrence relation defined by

$$a_n = a_{n-1} + 5, \qquad n \ge 2$$

n-th Term of a Sequence

- Recurrence relation can be used to compute any *n*-th term of the sequence.
- Example: Given the initial condition, a_1 :

$$a_{n} = a_{n-1} + 5$$
, $n \ge 2$
3, 8, 13, 18, 23, **28,** $a_{n-1} + 5$, ...
$$a_{2} = a_{1} + 5$$
, $3 + 5 = 8$

$$a_{3} = a_{2} + 5$$
, $8 + 5 = 13$

$$a_{4} = a_{3} + 5$$
, $13 + 5 = 18$

$$\vdots$$

$$a_{6} = a_{5} + 5$$
, $23 + 5 = 28$

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for $n = 1, 2, 3, \ldots$, and suppose that $a_0 = 2$. What are a_1, a_2 , and a_3 ?

Solution:

We see from the recurrence relation that,

$$a_1 = a_0 + 3 = 2 + 3 = 5$$
. It then follows that,

$$a_2 = a_1 + 3 = 5 + 3 = 8$$
 and

$$a_3 = a_2 + 3 = 8 + 3 = 11.$$

Consider the following sequence:

The above sequence shows a pattern:

$$3^1$$
, 3^2 , 3^3 , 3^4 , 3^5 , ... a_1 , a_2 , a_3 , a_4 , a_5 , ...

Recurrence relation is defined by:

$$a_n = 3^n$$
, $n \ge 1$

Given initial condition, $a_0 = 1$ and recurrence relation:

$$a_n = 1 + 2a_{n-1}, n \ge 1$$

First few sequence are:

$$a_1 = 1 + 2 (1) = 3$$

 $a_2 = 1 + 2(3) = 7$
 $a_3 = 1 + 2(7) = 15$

Given initial conditions, $a_0 = 1$, $a_1 = 2$ and recurrence relation:

$$a_n = 3(a_{n-1} + a_{n-2}), n \ge 2$$

First few sequence are:

$$a_2 = 3(2+1) = 9$$

 $a_3 = 3(9+2) = 33$
 $a_4 = 3(33+9) = 126$

1, 2, 9, 33, 126, 477, 1809, 6858, 26001,...

For a photo shoot, the staff at a company have been arranged such that there are 10 people in the front row and each row has 7 more people than in the row in front of it. Find the recurrence relation and compute number of staff in the first 5 rows.

Example 4 - Solution

Notice that the difference between the number of people in successive rows is a constant amount.

This means that the $n_{\rm th}$ term of this sequence can be found using:

$$a_n = a_{n-1} + 7$$
, $n \ge 2$ with $a_1 = 10$

Number of staff in the first 5 rows:

$$a_1 = 10$$
,
 $a_2 = a_1 + 7 \Rightarrow 10 + 7 = 17$,
 $a_3 = a_2 + 7 \Rightarrow 17 + 7 = 24$,
 $a_4 = a_3 + 7 \Rightarrow 24 + 7 = 31$,
 $a_5 = a_4 + 7 \Rightarrow 31 + 7 = 38$.

10, 17, 24, 31, 38

Find a recurrence relation and initial condition for

1, 5, 17, 53, 161, 485, ...

However the original sequence is not.

$$1(3)=3$$
, $5(3)=15$, $17(3)=51$, . . .

1, 5, 17, 53, 161, 485, ...

It appears that we always end up with 2 less than the next term.

So, the recurrence relation is defined by:

A depositor deposits RM 10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years? Let P_n denote the amount in the account after n years.

Example - Solution

Derive the following recurrence relation:

Where, P_n = Current balance and P_{n-1} = Previous year balance and 0.05 is the compounding interest.

Initial condition, $P_0 = 10,000$. Then,

now we can use this formula to calculate n_{th} term without iteration.

...cont'd

Let us use this formula to find P_{30} under the initial condition $P_0 = 10,000$:

After 30 years, the account contains RM 43,219.42.

Exercise # 1

Consider the following sequence:

1, 5, 9, 13, 17

Find the recurrence relation that defines the above sequence.

Exercise #2

A basketball is dropped onto the ground from a height of 15 feet. On each bounce, the ball reaches a maximum height 55% of its previous maximum height.

a) Write a recursive formula, a_n , that completely defines the height reached on the $n_{\rm th}$ bounce, where the first term in the sequence is the height reached on the ball's first bounce.

b)How high does the basketball reach after the 4th bounce? Give your answer to two decimal places.

Exercise #2 - Solution

Recursion

- Recursion is a powerful, elegant and natural way to solve a large class of problems that relate to sequence/recurrence relation.
- A recursive procedure is a procedure that invokes itself.
- A recursive algorithm is an algorithm that contains a recursive procedure.

Factorial problem

o If
$$n \ge 1$$
,
 $n! = n (n - 1) => 2 \times 1$
and $0! = 1$

o Notice that, if $n \ge 2$, n factorial can be written as,

$$n! = n(n-1)(n-2) => 2 \times 1 \times 0$$

= $n(n-1)!$

5!

$$4! = 4.3!$$

$$3! = 3.2!$$

Recursive Algorithm for Factorial

```
    Input: n, integer ≥ 0
    Output: n!
    Factorial (n) {
        if (n=0)
        return 1
        return n*factorial(n-1)
        }
```


Fibonacci sequence, f_n

$$f_1 = 1$$

 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$, for $n \ge 3$

1, 1, 2, 3, 5, 8, 13,

Recursive algorithm for Fibonacci Sequence:

```
Input: n
Output: f (n)
f(n) {
if (n=1 or n=2)
return 1
return f (n-1) + f (n-2)
}
```


Consider the following arithmetic sequence:

Suppose a_n is the term sequence. The generating rule is

$$a_n = a_{n-1} + 2$$
, for $n \ge 1$.

The relevant recursive algorithm can be written as

```
f(n)
{ if (n=1)
return 1
return f(n-1) + 2
}
```

Use the above recursive algorithm to trace n = 4.

Example-Solution

Trace the output if n = 4

Answer = .7