

SCSI1013: Discrete Structures

CHAPTER 2

(Part 2)

FUNCTIONS

2017/2018 - SEM. 1 : nzah@utm.my

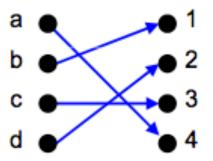
Definition

A function f from a set X to a set Y, denoted $f:X \rightarrow Y$, is a relation from X, the **domain**, to Y, the **co-domain**, that satisfies two properties:

- 1) Every element in **X** is related to some element in **Y**,
- 2) No element in **X** is related to more than one element in **Y**.

Relations vs Functions

- Not all relations are functions
- But consider the following function:



All functions are relations!

When to use which?

- A function is used when you need to obtain a SINGLE result for any element in the domain
 - Example: sin, cos, tan
- A relation is when there are multiple mappings between the domain and the co-domain
 - Example: students enrolled in multiple courses

Domain, Co-domain, Range

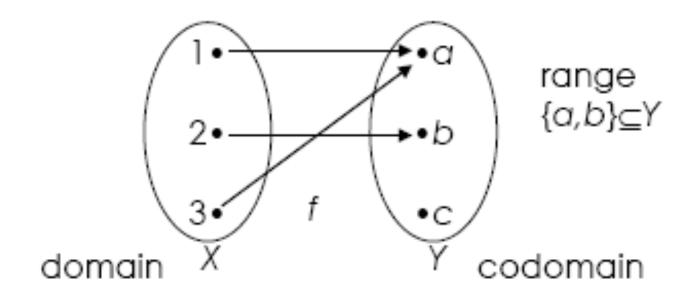
- A function from a set X to a set Y is denoted,
 f: X → Y
- The domain of f is the set X.
- The set Y is called the co-domain or target of f.
- The set $\{y \mid (x,y) \in f\}$ is called the range.

Given the relation, $f = \{ (1,a), (2,b), (3,a) \}$ from $\mathbf{X} = \{ 1, 2, 3 \}$ to $\mathbf{Y} = \{ a, b, c \}$ is a function from \mathbf{X} to \mathbf{Y} . State the domain and range.

Solution:

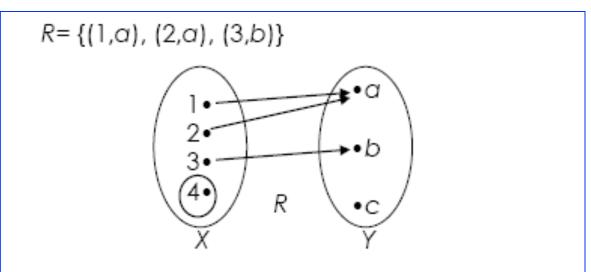
- \checkmark The domain of f is X
- ✓ The range of f is $\{a, b\}$

f = { (1,a), (2,b), (3,a) }



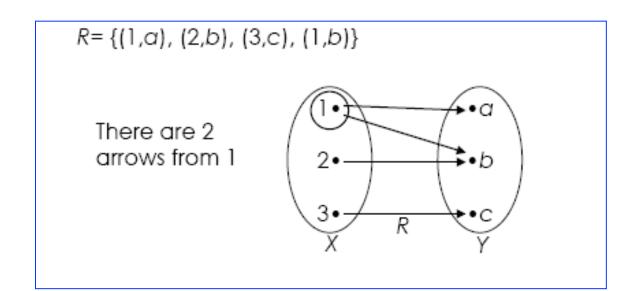
_

- The relation, R= {(1,a), (2,a), (3,b)} from X= {1, 2, 3, 4} to Y= {a, b, c} is NOT a function from X to Y.
- The domain of R, { 1,2,3 } is not equal to X.



There is no arrow from 4

- The relation, R= {(1,a), (2,b), (3,c), (1,b)} from X= {1, 2, 3} to Y= {a, b, c} is NOT a funtion from X to Y
- (1,a) and (1,b) in R but a ≠ b.



Notation of function: f(x)

• For the function, $f = \{(1,a), (2,b), (3,a)\}$

We may write:

$$f(1) = a, f(2) = b, f(3) = a$$

• Notation f(x) is used to define a function.

o Defined: $f = \{(x, x^2) | x \text{ is a real number}\}$

$$f(x) = x^2$$

o
$$f(2) = 4$$
, $f(-3.5) = 12.25$, $f(0) = 0$

One-to-One Function

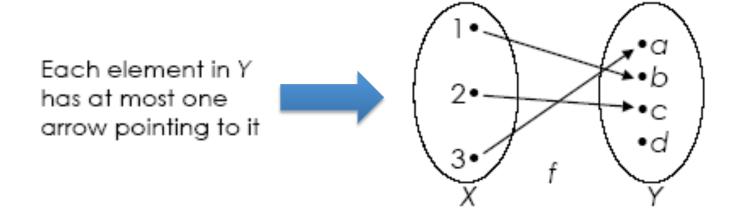
Let f be a function from a set X to a set Y. f is **one-to-one** (or injective) if, and only if, for all elements x_1 and x_2 in X,

if
$$f(x_1) = f(x_2)$$
, then $x_1 = x_2$,
or, equivalently,
if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Symbolically,

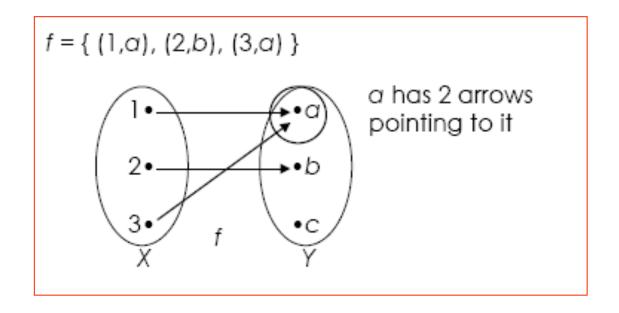
$$f: X \to Y$$
 is one-to-one $\Leftrightarrow \forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

• The function, $f = \{ (1,b), (3,a), (2,c) \}$ from $X = \{ 1, 2, 3 \}$ to $Y = \{ a, b, c, d \}$ is one-to-one.



• In terms of arrow diagrams, a one-to-one function can be thought of as a function that separates points. That is, it takes distinct points of the domain to distinct points of the co-domain.

- The function, $f = \{ (1,a), (2,b), (3,a) \}$ from $X = \{ 1, 2, 3 \}$ to $Y = \{ a, b, c \}$ is NOT one-to-one.
- f(1) = f(3) = a



Show that the function,

$$f(\mathbf{n}) = 2\mathbf{n} + 1$$

on the set of positive integers is one-to-one.

Solution:

For all positive integer, n₁and n₂ if f (n₁)
 = f (n₂), then n₁=n₂.

• Let,
$$f(n_1) = f(n_2)$$
, $f(n) = 2n+1$
then $2n_1 + 1 = 2n_2 + 1$ (-1)
 $2n_1 = 2n_2$ (÷2)
 $n_1 = n_2$

This shows that f is one-to-one.

Show that the function,

$$f(n) = 2^n - n^2$$

on the set of positive integers is NOT one-to-one.

Solution:

- Need to find 2 positive integers, n₁and n₂
 n₁≠n₂ with f (n₁) = f (n₂).
- trial and error,

$$f(2) = f(4)$$

 $f(n) = 2^{n} - n^{2}$ $n = 2 \Rightarrow 2^{2} - 2^{2} = 0$ $n = 4 \Rightarrow 2^{4} - 4^{2} = 0$

f is not one-to-one.

Onto Function

Let f be a function from a set X to a set Y.

f is **onto** (or **surjective**) if, and only if, given any element y in \mathbf{Y} , it is possible to find an element x in \mathbf{X} with the property that y = f(x).

Symbolically,

 $f: X \to Y$ is onto $\Leftrightarrow \forall y \in Y, \exists x \in X$ such that f(x) = y.

Let
$$X = \{ 1, 2, 3, 4 \}$$
 and $Y = \{ a, b, c \}$.

Define $h: \mathbf{X} \to \mathbf{Y}$ as follows:

$$h(1) = c, h(2) = a, h(3) = c, h(4) = b.$$

Define $k: \mathbf{X} \to \mathbf{Y}$ as follows:

$$k(1) = c, k(2) = b, k(3) = b, k(4) = c.$$

Is either *h* or *k* onto?

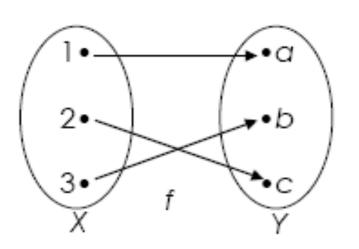
h is onto because each of the three elements of the co-domain of h is the image of some element of the domain of h.

k is not onto because $a \neq k(x)$ for any x in $\{1,2,3,4\}$

• The function, $f = \{ (1,a), (2,c), (3,b) \}$ from $X = \{ 1, 2, 3 \}$ to $Y = \{ a, b, c \}$ is one-to-one and onto Y.

•
$$f = \{ (1,a), (2,c), (3,b) \}$$

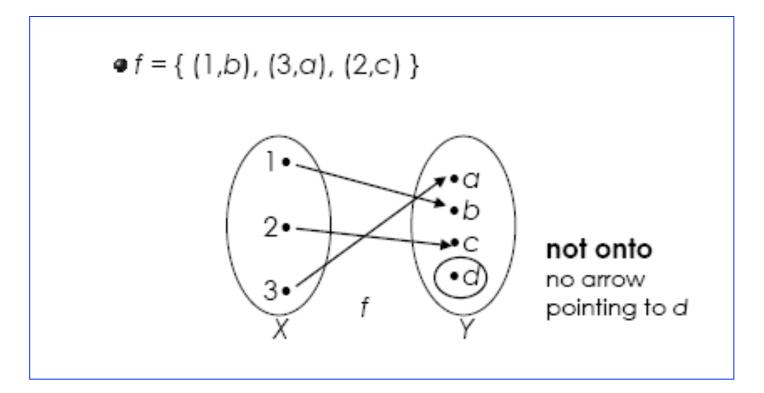
One-to-one Each element in Y has at most one arrow



Onto

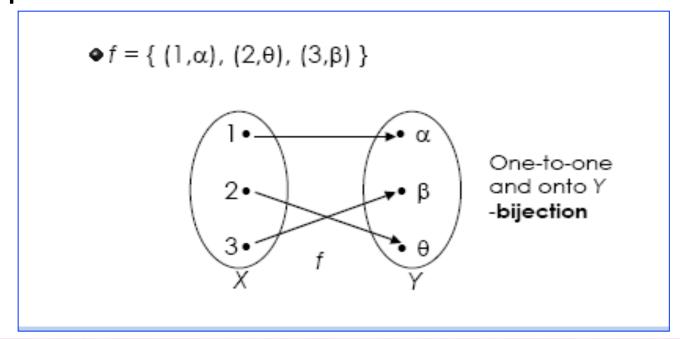
Each
element in Y
has at least
one arrow
pointing to it

The function, f = { (1,b), (3,a), (2,c) } is not onto Y = {a, b, c, d}



Bijection Function

- A function, f is called one-to-one correspondence (or bijective/bijection) if f is both one-to-one and onto.
- Example:



Exercise # 1

Determine which of the relations f are functions from the set \mathbf{X} to the set \mathbf{Y} . In case any of these relations are functions, determine if they are one-to-one, onto \mathbf{Y} , and/or bijection.

a)
$$X = \{-2, -1, 0, 1, 2\}, Y = \{-3, 4, 5\}$$
 and $f = \{(-2, -3), (-1, -3), (0, 4), (1, 5), (2, -3)\}$

b)
$$\mathbf{X} = \{-2, -1, 0, 1, 2\}$$
, $\mathbf{Y} = \{-3, 4, 5\}$ and $f = \{(-2, -3), (1, 4), (2, 5)\}$

c)
$$\mathbf{X} = \mathbf{Y} = \{ -3, -1, 0, 2 \}$$
 and $f = \{ (-3,-1), (-3,0), (-1,2), (0,2), (2,-1) \}$

Exercise #2

Let
$$X = \{1, 2, 3\}$$
, $Y = \{1, 2, 3, 4\}$ and $Z = \{1, 2\}$.

a) Define a function $f: X \rightarrow Y$ that is one-to-one but not onto.

b) Define a function $g:X \rightarrow Z$ that is onto but not one-to-one.

c) Define a function $h: X \rightarrow X$ that is neither one-to-one nor onto.

Inverse Function

If f is a one-to-one correspondence from a set \mathbf{X} to a set \mathbf{Y} , then there is a function from \mathbf{Y} to \mathbf{X} that "undoes" the action of f (it sends each element of \mathbf{Y} back to the element of \mathbf{X} that it came from). This function is called the inverse function for f.

Theorem

Suppose $f: \mathbf{X} \to \mathbf{Y}$ is one-to-one correspondence; that is, suppose f is one-to-one and onto. Then there is a function $f^{-1}: \mathbf{Y} \to \mathbf{X}$ that is defined as follows:

Given any element y in Y,

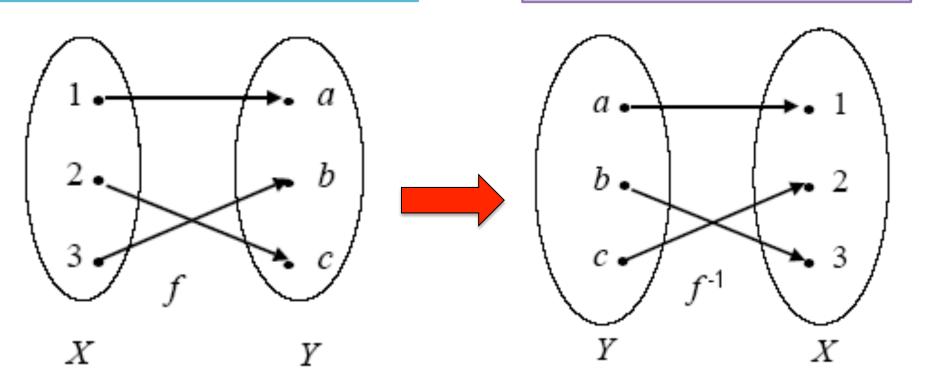
 $f^{-1}(y)$ = that unique element x in \mathbf{X} such that f(x) equals y.

In other words,

$$f^{-1}(y) = x \Leftrightarrow y = f(x)$$

$$f = \{(1,a),(2,c),(3,b)\}$$

$$f^{-1}$$
= {(a,1),(c,2),(b,3)}



The function, $f: \mathbf{R} \to \mathbf{R}$ defined by the formula

$$f(x) = 4x - 1$$
 for all $x \in \mathbf{R}$ (real number)

This function is both one-to-one and onto. Find the inverse function.

Solution:

$$f(x) = y$$

$$\Leftrightarrow$$
 $4x - 1 = y$

$$\Leftrightarrow x = \frac{y+1}{4}$$

Hence
$$f^{-1}(y) = \frac{y+1}{4}$$

Exercise

Find each inverse function.

a)
$$f(x) = 4x + 2, x \in R$$

b)
$$f(x) = 3 + (1/x), x \in R$$

Composition

Suppose that g is a function from X to Y and f is a function from Y to Z.

• The composition of f with g,

is a function

$$(f \circ g)(x) = f(g(x))$$

from X to Z.

 Composition sometimes allows us to decompose complicated functions into simpler functions.

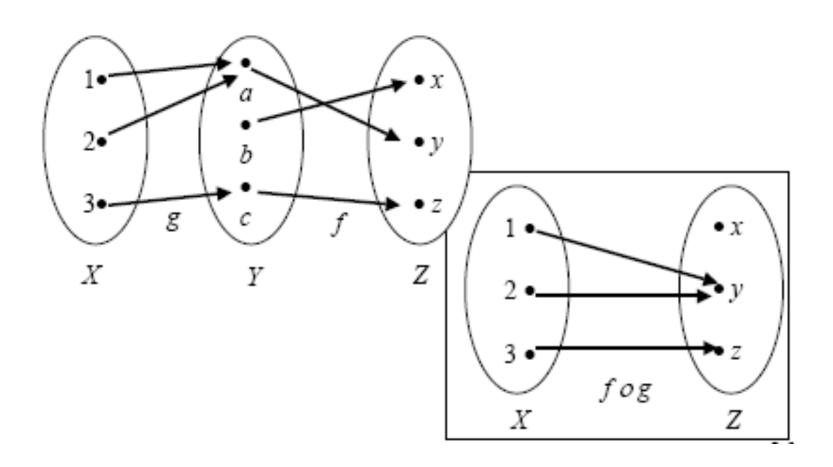
• example
$$f(x) = \sqrt{\sin 2x}$$

$$g(x) = \sqrt{x} \qquad h(x) = \sin x \qquad w(x) = 2x$$
$$f(x) = g(h(w(x)))$$

Given, g = { (1,a), (2,a), (3,c) }
 a function from X = {1, 2, 3} to Y = {a, b, c}
 and,
 f = { (a,y), (b,x), (c,z) }
 a function from Y to Z = { x, y, z }.

The composition function from X to Z is the function

$$f \circ g = \{ (1,y), (2,y), (3,z) \}$$



Let, $f(x) = \log_3 x$, and $g(x) = x^4$.

Find:

a) $f \circ g$ b) $g \circ f$

Solution:

a)
$$f \circ g = f(g(x)) = \log_3(x^4)$$

b)
$$g \circ f = g(f(x)) = (\log_3 x)^4$$

$$.: Note: f \circ g \neq g \circ f$$

Define, $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ by the rules f(a) = 7a and $g(a) = a \mod 5$ for all integers a.

Find:

- a) $(g \circ f)(0)$
- b) $(g \circ f)(1)$
- c) $(g \circ f)(2)$
- $(g \circ f)(3)$
- e) $(g \circ f)(4)$

Exercise

Define, $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ by the rules $f(n) = n^3$, g(n) = n-1 for all integers n.

Find the compositions of the following:

- a) f o f
- b) $g \circ g$
- c) f o g
- d) g o f
- e) Is $f \circ g = g \circ f$?