starting out with >>>

4+
Chapter 5: - g

NINTH EDITION

Loops and Files

TONY GADDIS

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Increment and Decrement
Operators

@ ++ is the increment operator.
It adds one to a variable.

val++; Isthesameasval = val + 1;

@ ++ can be used before (prefix) or after (postfix) a
variable:
++val; val++;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Increment and Decrement
Operators

2 —--Is the decrement operator.
It subtracts one from a variable.
val--; Isthesameasval = val - 1;
o —-- can be also used before (prefix) or after

(postfix) a variable:
--val; val--;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Increment and Decrement
Operators in Program 5-1

Program 5-1

1

// This program demonstrates the ++ and -- operators.
¢include <iostream>
using namespace std;

int main()

{

int num = 4; // num starts out with 4.

// Display the wvalue in num.
cout << "The variable num is " << num << endl;
cout << "I will now increment num.\n\n";

// Use postfix ++ to increment num.

num++;

cout << "Now the wvariable num is " << num << endl;
cout << "I will increment num again.\n\n";

// Use prefix ++ to increment num.

++num;

cout << "Now the wvariable num is " << num << endl;
cout << "I will now decrement num.\n\n";

// Use postfix -- to decrement num.

num--;

cout << "Now the wvariable num is " << num << endl;
cout << "I will decrement num again.\n\n";

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Continued...

Increment and Decrement
Operators in Program 5-1

Program 5-1 (continued)

28 // Use prefix -- to increment num.

2¢ —-num;

: cout << "Now the wvariable num is " << num << endl;
31 return 0;
2}

Program Output

The wvariable num is 4
I will now increment num.

Now the wvariable num is 5
I will increment num again.

Now the wvariable num is 6
I will now decrement num.

Now the wvariable num is 5
I will decrement num again.

Now the wvariable num is 4

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Prefix vs. Postfix

++ and —-- operators can be used In
complex statements and expressions

) In prefix mode (++val, --val)the
operator increments or decrements, then
returns the value of the variable

In postfix mode (val++, val--)the
operator returns the value of the variable,
then increments or decrements

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Prefix vs. Postfix - Examples

int num, val = 12;
cout << wval++; // displays 12,
// val is now 13;
cout << ++val; // sets val to 14,
// then displays it

num = —--val; // sets val to 13,
// stores 13 in num
num = val--; // stores 13 in num,

// sets wval to 12

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Notes on Increment and

Decrement
» Can be used in expressions:
result = numl++ + —--num?2;

» Must be applied to something that has a location
iIn memory. Cannot have:
result = (numl + num?) ++;

Can be used in relational expressions:
if (++num > limit)

pre- and post-operations will cause different
comparisons

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.2

Introduction to Loops: The while
Loop

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Introduction to Loops:
The while Loop

» Loop: a control structure that causes a
statement or statements to repeat

General format of the while loop:

while (expression)

statement;

statement; can also be a block of
statements enclosed in { }

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The while Loop — How It Works

while (expression)

statement;

expression IS evaluated

2if true, then statement is executed, and
expression Is evaluated again

If false, then the loop is finished and
program statements following statement
execute

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Logic of a while Loop

True
Statement(s)

False

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The while loop in Program 5-3

Program 5-3
1 // This program demonstrates a simple while loop.
2 #include <iostream>

using namespace std;

5 int main()

{
7 int number = 1;
9 while (number <= 5)
10 {
11 cout << "Hello\n";
12 number++;
13 }
14 cout << "That's all!\n";
15 return 0;
16}
Program Output
Hello
Hello
Hello
Hello
Hello
That's all!

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

How the while Loop in Program 5-
3 Lines 9 through 13 Works

Test this expression.

If the expression is true,
o hiTE ChiibaT =) perform these statements.

{ \
cout << "Hello\n";

number++;
}

After executing the body of the loop, start over.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart of the while Loop in
Program 5-3

True

Print "Hello" |——— Add 1 to
number

False

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The while Loop is a Pretest Loop

expression IS evaluated before the

loop executes. The following loop will
never execute:

int number = 6;
while (number <= b5)

{
cout << "Hello\n";
number++;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Watch Out for Infinite Loops

» The loop must contain code to make
expression become false

» Otherwise, the loop will have no way of
stopping

»Such a loop is called an infinite loop,
because it will repeat an infinite number of
times

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Example of an Infinite Loop

int number = 1;
while (number <= 5)

{
cout << "Hello\n";

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

5.3

Using the while Loop for Input
Validation

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the while Loop for
Input Validation

» Input validation is the process of
Inspecting data that is given to the
program as input and determining whether
it is valid.

» The while loop can be used to create input
routines that reject invalid data, and repeat
until valid data is entered.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the while Loop for
Input Validation

2 Here's the general approach, in
pseudocode:

Read an item of input.

While the input is invalid
Display an error message.
Read the input again.

End While

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Input Validation Example

cout << "Enter a number less than 10: ;

cin >> number;
while (number >= 10)

{
cout << "Invalid Entry!"

<< "Enter a number less than 10:
cin >> number;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart for Input Validation

|

Read the first
value.

| Display an Read another |__
error message. value.

|

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Input Validation in Program 5-5

// Get the number of players per team.
cout << "How many players do you wish per team? ";
cin >> teamPlayers;

N = O

w

24 // Validate the input.

25 while (teamPlayers < MIN PLAYERS || teamPlayers > MAX PLAYERS)
26 {

27 // Explain the error.

28 cout << "You should have at least " << MIN PLAYERS
29 << " but no more than " << MAX PLAYERS << " per team.\n";
JV

31 // Get the input again.

32 cout << "How many players do you wish per team? ";
33 cin >> teamPlayers;

34 }

35

36 // Get the number of players available.

37 cout << "How many players are available? ";

38 cin >> players;

39

40 // Validate the input.

41 while (players <= 0)

42 {

43 // Get the input again.

44 cout << "Please enter 0 or greater: ";

45 cin >> players;

46 }

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

\J From Coatrol Structures
through Objects

5.4

Counters

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Counters

Counter: a variable that is incremented or
decremented each time a loop repeats

» Can be used to control execution of the
loop (also known as the loop control
variable)

Must be initialized before entering loop

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Counter Variable Controls the
Loop in Program 5-6

Program 5-6

I // This program displays a list of numbers and
2 // their squares.
3 #include <iostream>

4 using namespace std;

g5

6 int main()

7 A

8 const int MIN NUMBER = 1, // Starting number to square
9 MAX NUMBER = 10; // Maximum number to square
10

11 int num = MIN NUMBER; // Counter

13 cout << "Number Number Squared\n";

14 COUt << M \n";

Continued...

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Counter Variable Controls the
Loop in Program 5-6

while (num <= MAX NUMBER)

{
cout << num << "\t\t" << (num * num) << endl;
num++; //Increment the counter.

}

20 return 0;

21}

Program Output

Number Number Squared

16
25
36
49
64
81
0 100

= O 00~ O Ul W =

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

" From Coatrol Structures
through Objects

0.9

The do-while Loop

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The do-while Loop

do-while: a posttest loop — execute the loop,
then test the expression

» General Format:
do
statement; // or block in { }
while (expression);

* Note that a semicolon is required after
(expression)

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Logic of a do-while Loop

-

Statement(s)

|

True

Expression

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

An Example do-while Loop

int x = 1;
do

{
cout << x << endl;

} while(x < 0);

Although the test expression is false, this loop will
execute one time because do-while is a posttest

loop.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A do-while Loop in Program 5-7

Program 5-7

10
11
12

14
15
16
17

19

// This program averages 3 test scores. It repeats as
// many times as the user wishes.

tinclude <iostream>

using namespace std;

int main()

{

int scorel, score2, score3; // Three scores

double average; // RAverage score

char again; // To hold Y or N input
do

{

// Get three scores.
cout << "Enter 3 scores and I will average them: "
cin »>> scorel >> score2 >> score3;

-

// Calculate and display the average.
average = (scorel + score2 + score3) / 3.0;
cout << "The average is " << average << ".\n";

// Does the user want to average another set?
cout << "Do you want to average another set? (Y/N) ";
cin >> again;

} while (again == 'Y' || again == 'y');
return 0;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Continued...

A do-while Loop in Program 5-7

Program Output with Example Input Shown in Bold

Enter 3 scores and I will average them: 80 90 70 [Enter]
The average is 80.

Do you want to average another set? (Y/N) y [Enter]
Enter 3 scores and I will average them: 60 75 88 [Enter]
The average is 74.3333.

Do you want to average another set? (Y/N) n [Enter]

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

do-while Loop Notes

» Loop always executes at least once

Execution continues as long as
expression s true, stops repetition

when expression becomes false

Useful in menu-driven programs to bring
user back to menu to make another choice
(see Program 5-8 on pages 245-2406)

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

\J From Coatrol Structures
through Objects

5.0

The for Loop

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The for Loop

Useful for counter-controlled loop

» General Format:

for(initialization,; test; update)

statement; // or block in { }

> No semicolon after the update expression or
after the)

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Mechanics

for(initialization; test; update)

statement; // or block in { }

1) Perform initialization

2) Evaluate test expression
If true, execute statement
If false, terminate loop execution

3) Execute update, then re-evaluate test
expression

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Example

int count;

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Closer Look
at the Previous Example

Step 1: Perform the initialization expression.

Step 2: Evaluate the test expression. If it is true, go to Step 3.
Otherwise, terminate the loop.

for (count = 1; count <= 5; count++)

cout << "Hello" << endl; T <—— Step 3: Execute the body of the loop.

Step 4: Perform the update expression,
then go back to Step 2.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart for the Previous Example

l

Assign 1 to
count

l<

True cout Increment
statement count

False

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A for Loop in Program 5-9

Program 5-9

18
19

// This program displays the numbers 1 through 10 and
// their squares.

#include <iostream>

using namespace std;

int main()

{
const int MIN NUMBER = 1, // Starting value
MAX NUMBER = 10; // Ending value
int num;
cout << "Number Number Squared\n";
COUut << M \n";
for (num = MIN NUMBER; num <= MAX NUMBER; num++)
cout << num << "\t\t" << (num * num) << endl;
return 0;
}

Continued...

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A for Loop in Program 5-9

Program Output
Number Number Squared

= O 0~ WN =
w
N

0 100

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Closer Look at Lines 15 through
16 in Program 5-9

Step 1: Perform the initialization ~ Step 2: Evaluate the test expression. Step 4: Perform the update
expression. If it is true, go to Step 3. expression, then go
Otherwise, terminate the loop. back to Step 2.

: /

for (num = MIN NUMBER; num <= MAX NUMBER; num++)
cout << num << "\t\t" << (num * num) << endl;

T— Step 3: Execute the body of the loop.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart for Lines 15 through 16
in Program 5-9

|

Assign
MIN NUMBER
fo num

Display num _| Increment J

and num * num num

A

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

When to Use the for Loop

» In any situation that clearly requires
*an initialization
»a false condition to stop the loop
»an update to occur at the end of each iteration

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The for Loop is a Pretest Loop

> The for loop tests its test expression
before each iteration, so it is a pretest
loop.

» The following loop will never iterate:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications

»You can have multiple statements in the
initialization expression. Separate
the statements with a comma:

int x, v;
for (x=1, y=1; x <= 5; x++)
{
cout << x << " plus " KKy
<< " equals " << (x+V)
<< endl;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications

»You can also have multiple statements Iin
the test expression. Separate the
statements with a comma:

int x, v;

for (x=1, y=1; x <= 5; |x++, vy++)
{

cout << x << " plus " KKy

<< " equals " << (x+V)
<< endl;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications

2You canomitthe initialization
expression if it has already been done:

int sum = 0, num = 1;
for (; num <= 10; num++)

sum —+= num,

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications

»You can declare variables in the
initialization expression:

int sum = 0;
for (int num = 0; num <= 10;
num++)

sum —+= num,

The scope of the variable num is the for loop.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

o./

Keeping a Running Total

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Keeping a Running Total

» running total: accumulated sum of numbers from
each repetition of loop

» accumulator: variable that holds running total
int sum=0, num=1l; // sum 1is the
while (num <= 10) // accumulator
{ sum += num;

num++;

}

cout << "Sum of numbers 1 — 10 is"
<< sum << endl;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Logic for Keeping a Running Total

.

Set accumulator to 0

Add the number to the
accumulator

Is there a number
to read?

Read the number

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Running Total in Program 5-12

Program 5-12

1 [/ This program takes daily sales amounts over a period of time
2 |/ and calculates their total.

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 int main()

8 |

9 int days; // Number of days
10 double total = 0.0; // Accumulator, initialized with O
11
12 /| Get the number of days.
13 cout << "For how many days do you have sales amounts? ";

Continued...

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Running Total in Program 5-12

14 cin >> days;

15

16 /| Get the sales for each day and accumulate a total.
17 for (int count = 1; count <= days; count++)

18 {

19 double sales;

20 cout << "Enter the sales for day " << count << ": ";
21 cin >> sales;

22 total += sales; // Accumulate the running total.
23 }

24

25 /| Display the total sales.

26 cout << fixed << showpoint << setprecision(2);

27 cout << "The total sales are $" << total << endl;

28 return 0;

29 1}

Program Output with Example Input Shown in Bold

For how many days do you have sales amounts? 5 (Enter)
Enter the sales for day 1: 489.32 (Enter)

Enter the sales for day 2: 421.65 (Enter)

Enter the sales for day 3: 497.89 (Enter)

Enter the sales for day 4: 532.37 (Enter)

Enter the sales for day 5: 506.92 (Enter)

The total sales are $2448.15

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

\J From Coatrol Structures
through Objects

5.8

Sentinels

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Sentinels

»sentinel: value in a list of values that
indicates end of data

» Special value that cannot be confused with
a valid value, e.qg., -999 for a test score

Used to terminate input when user may
not know how many values will be entered

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Sentinel in Program 5-13

Program 5-13

1
2

16
17
18
19
20
21
22
24

)5

26

// This program calculates the total number of points a

// soccer team has earned over a series of games. The user
// enters a series of point values, then -1 when finished.
#include <iostream>

using namespace std;

int main()
{
int game = 1, // Game counter
points, // To hold a number of points

total = 0; // Accumulator

cout << "Enter the number of points your team has earned\n";

cout << "so far in the season, then enter -1 when finished.\n\n";
cout << "Enter the points for game " << game << ": ";

cin >> points;

while (points != -1)

{
total += points;
game++;
cout << "Enter the points for game " << game << ": ";
cin >> points;
}

cout << "\nThe total points are " << total << endl;
return 0;

Continued...

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Sentinel in Program 5-13

Program Output with Example Input Shown in Bold

Enter the number of points your team has earned
so far in the season, then enter -1 when finished.

Enter the points for game 1: 7 [Enter]
Enter the points for game 2: 9 [Enter]
Enter the points for game 3: 4 [Enter]
Enter the points for game 4: 6 [Enter]
Enter the points for game 5: 8 [Enter]
Enter the points for game 6: -1 [Enter]

The total points are 3234

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

5.9

Deciding Which Loop to Use

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Deciding Which Loop to Use

» The while loop is a conditional pretest loop
Iterates as long as a certain condition exits
Validating input
Reading lists of data terminated by a sentinel

The do-while loop is a conditional posttest loop
Always iterates at least once
Repeating a menu

The for loop is a pretest loop
Built-in expressions for initializing, testing, and updating
Situations where the exact number of iterations is known

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Saegost Wi >>> gy
'

" From Coatrol Structures
through Objects

5.10

Nested Loops

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Nested Loops

» A nested loop is a loop inside the body of
another loop

» Inner (inside), outer (outside) loops:

for (row=1l; row<=3; row++) //outer
for (col=1; col<=3; col++)//inner

cout << row * col << endl;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Nested for Loop in Program 5-14

26 // Determine each student's average score.

27 for (int student = 1; student <= numStudents; student++)
28 {

29 total = 0; // Initialize the accumulator.

30 for (int test = 1; test <= numTests; test++)

31 {

32 double score;

33 cout << "Enter score " << test << " for ";

34 cout << "student " << student << ": ";

35 cin >> score;

36 total += score;

37 } Inner Loop

38 average = total / numTests;

39 cout << "The average score for student " << student;
40 cout << " is " << average << ".\n\n";

41 } Outer Loop

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Nested Loops - Notes

»Inner loop goes through all repetitions for
each repetition of outer loop

*Inner loop repetitions complete sooner
than outer loop

» Total number of repetitions for inner loop
Is product of number of repetitions of the
two loops.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

From Coatrol Structures

5.11

Using Files for Data Storage

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using Files for Data Storage

» Can use files instead of keyboard, monitor
screen for program input, output

» Allows data to be retained between
program runs
» Steps:
» Open the file
» Use the file (read from, write to, or both)
» Close the file

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Files: What is Needed

»Use fstream header file for file access

* File stream types:
ifstream for input from a file
ofstream for output to a file
fstream for input from or output to a file

» Define file stream objects:
1fstream 1nfile;
ofstream outfile;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Opening Files

Create a link between file name (outside the program)
and file stream object (inside the program)

Use the open member function:
infile.open("inventory.dat");
outfile.open ("report.txt");

Filename may include drive, path info.

Output file will be created if necessary; existing file will
be erased first

Input file must exist for open to work

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Testing for File Open Errors

2 Can test a file stream object to detect if an open
operation failed:

infile.open ("test.txt");
1f (!infile)
{

cout << "File open failure!";

}
2 Can also use the £ail member function

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using Files

» Can use output file object and << to send
data to a file:
outfile << "Inventory report";
Can use input file object and >> to copy

data from file to variables:
infile >> partNum;

infile >> gtyInStock >>
gtyOnOrder;

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using Loops to Process Files

» The stream extraction operator >> returns
true when a value was successfully read,

false otherwise

»Can be tested in a while loop to continue
execution as long as values are read from

the file:

while (inputFile >> number)

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Closing Files

Use the c1ose member function:

infile.close () ;
outfile.close () ;

» Don’t wait for operating system to close
files at program end:

*may be limit on number of open files

may be buffered output data waiting to send
to file

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Letting the User Specify a Filename

*In many cases, you will want the user to
specify the name of a file for the program
to open.

*In C++ 11, you can pass a string object

as an argument to a file stream object’s
open member function.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Letting the User Specify a
Filename in Program 5-24

Program 5-24

1 // This program lets the user enter a filename.
2 #include <iostream>

#include <string>

#include <fstream>

using namespace std;

U o W

] ON

int main()

B |
9 ifstream inputFille;

10 string filename;
11 int number;

13 // Get the filename from the user.
14 cout << "Enter the filename: ";

5 cin >> filename;

L

17 // open the file.
18 inputFile.open(filename);

20 // If the file successfully opened, process it.
21 1f (inputFile)

Continued...

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Letting the User Specify a
Filename in Program 5-24

// Read the numbers from the file and
24 // display them.

25 while (inputFile >> number)

26 {
cout << number << endl;
28 }

30 // Close the file.
31 inputFile.close();
32 }
33 else
34 {

35 // Display an error message.
36 cout << "Error opening the file.\n";
37 }

38 return 0;
39)

Program Output with Example Input Shown in Bold

Enter the filename: ListOfNumbers.txt [Enter]
100
200
300
400
500
600
700

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the ¢ str Member Function
iIn Older Versions of C++

»Prior to C++ 11, the open member
function requires that you pass the name
of the file as a null-terminated string, which
Is also known as a C-string.

» String literals are stored in memory as
null-terminated C-strings, but string
objects are not.

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the ¢ str Member Function
iIn Older Versions of C++

» string objects have a member function named ¢ str

2 It returns the contents of the object formatted as a
null-terminated C-string.

2 Here is the general format of how you call the ¢ str
function:

stringObject.c str()

Line 18 in Program 5-24 could be rewritten in the
following manner:

inputFille.open(filename.c str());

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.12

Breaking and Continuing a Loop

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Breaking Out of a Loop

»Can use break to terminate execution of
a loop

» Use sparingly if at all - makes code harder
to understand and debug

*When used in an inner loop, terminates
that loop only and goes back to outer loop

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The continue Statement

»Can use continue to go to end of loop
and prepare for next repetition

» while, do-while loops: go to test, repeat
loop if test passes

» for loop: perform update step, then test,
then repeat loop if test passes

»Use sparingly — like break, can make
program logic hard to follow

@ Pearson Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

