
Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Chapter 5:
Loops and Files

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Increment and Decrement
Operators

++ is the increment operator.

It adds one to a variable.

val++; is the same as val = val + 1;

++ can be used before (prefix) or after (postfix) a
variable:
++val; val++;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Increment and Decrement
Operators
-- is the decrement operator.

It subtracts one from a variable.

val--; is the same as val = val - 1;

-- can be also used before (prefix) or after
(postfix) a variable:
--val; val--;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Increment and Decrement
Operators in Program 5-1

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Increment and Decrement
Operators in Program 5-1

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Prefix vs. Postfix
++ and -- operators can be used in
complex statements and expressions
In prefix mode (++val, --val) the
operator increments or decrements, then
returns the value of the variable
In postfix mode (val++, val--) the
operator returns the value of the variable,
then increments or decrements

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Prefix vs. Postfix - Examples
int num, val = 12;
cout << val++; // displays 12,

// val is now 13;
cout << ++val; // sets val to 14,

// then displays it
num = --val; // sets val to 13,

// stores 13 in num
num = val--; // stores 13 in num,

// sets val to 12

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Notes on Increment and
Decrement

Can be used in expressions:
result = num1++ + --num2;

Must be applied to something that has a location
in memory. Cannot have:

result = (num1 + num2)++;

Can be used in relational expressions:
if (++num > limit)

pre- and post-operations will cause different
comparisons

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.2
Introduction to Loops: The while

Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Introduction to Loops:
The while Loop

Loop: a control structure that causes a
statement or statements to repeat
General format of the while loop:
while (expression)

statement;

statement; can also be a block of
statements enclosed in { }

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The while Loop – How It Works

while (expression)

statement;

expression is evaluated
if true, then statement is executed, and
expression is evaluated again
if false, then the loop is finished and
program statements following statement
execute

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Logic of a while Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The while loop in Program 5-3

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

How the while Loop in Program 5-
3 Lines 9 through 13 Works

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart of the while Loop in
Program 5-3

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The while Loop is a Pretest Loop
expression is evaluated before the
loop executes. The following loop will
never execute:

int number = 6;
while (number <= 5)
{

cout << "Hello\n";
number++;

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Watch Out for Infinite Loops

The loop must contain code to make
expression become false
Otherwise, the loop will have no way of
stopping
Such a loop is called an infinite loop,
because it will repeat an infinite number of
times

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Example of an Infinite Loop

int number = 1;
while (number <= 5)
{

cout << "Hello\n";
}

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.3
Using the while Loop for Input

Validation

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the while Loop for
Input Validation

Input validation is the process of
inspecting data that is given to the
program as input and determining whether
it is valid.

The while loop can be used to create input
routines that reject invalid data, and repeat
until valid data is entered.

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the while Loop for
Input Validation

Here's the general approach, in
pseudocode:

Read an item of input.
While the input is invalid

Display an error message.
Read the input again.

End While

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Input Validation Example

cout << "Enter a number less than 10: ";
cin >> number;
while (number >= 10)
{

cout << "Invalid Entry!"
<< "Enter a number less than 10: ";

cin >> number;
}

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart for Input Validation

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Input Validation in Program 5-5

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.4
Counters

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Counters

Counter: a variable that is incremented or
decremented each time a loop repeats
Can be used to control execution of the
loop (also known as the loop control
variable)
Must be initialized before entering loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Counter Variable Controls the
Loop in Program 5-6

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Counter Variable Controls the
Loop in Program 5-6

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.5
The do-while Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The do-while Loop
do-while: a posttest loop – execute the loop,
then test the expression
General Format:

do
statement; // or block in { }

while (expression);

Note that a semicolon is required after
(expression)

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The Logic of a do-while Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

An Example do-while Loop

int x = 1;
do
{

cout << x << endl;
} while(x < 0);

Although the test expression is false, this loop will
execute one time because do-while is a posttest
loop.

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A do-while Loop in Program 5-7

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A do-while Loop in Program 5-7

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

do-while Loop Notes

Loop always executes at least once
Execution continues as long as
expression is true, stops repetition
when expression becomes false
Useful in menu-driven programs to bring
user back to menu to make another choice
(see Program 5-8 on pages 245-246)

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.6
The for Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The for Loop

Useful for counter-controlled loop

General Format:

for(initialization; test; update)
statement; // or block in { }

No semicolon after the update expression or
after the)

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Mechanics
for(initialization; test; update)

statement; // or block in { }

1) Perform initialization

2) Evaluate test expression
If true, execute statement
If false, terminate loop execution

3) Execute update, then re-evaluate test
expression

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Example

int count;

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Closer Look
at the Previous Example

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart for the Previous Example

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A for Loop in Program 5-9

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A for Loop in Program 5-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Closer Look at Lines 15 through
16 in Program 5-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Flowchart for Lines 15 through 16
in Program 5-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

When to Use the for Loop

In any situation that clearly requires
an initialization
a false condition to stop the loop
an update to occur at the end of each iteration

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The for Loop is a Pretest Loop

The for loop tests its test expression
before each iteration, so it is a pretest
loop.
The following loop will never iterate:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications
You can have multiple statements in the
initialization expression. Separate
the statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Initialization Expression

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications
You can also have multiple statements in
the test expression. Separate the
statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++, y++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Test Expression

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications

You can omit the initialization
expression if it has already been done:

int sum = 0, num = 1;

for (; num <= 10; num++)

sum += num;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

for Loop - Modifications

You can declare variables in the
initialization expression:

int sum = 0;

for (int num = 0; num <= 10;
num++)

sum += num;

The scope of the variable num is the for loop.

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.7
Keeping a Running Total

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Keeping a Running Total
running total: accumulated sum of numbers from
each repetition of loop
accumulator: variable that holds running total
int sum=0, num=1; // sum is the
while (num <= 10) // accumulator
{ sum += num;

num++;
}
cout << "Sum of numbers 1 – 10 is"

<< sum << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Logic for Keeping a Running Total

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Running Total in Program 5-12

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Running Total in Program 5-12

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.8
Sentinels

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Sentinels
sentinel: value in a list of values that
indicates end of data

Special value that cannot be confused with
a valid value, e.g., -999 for a test score

Used to terminate input when user may
not know how many values will be entered

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Sentinel in Program 5-13

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

A Sentinel in Program 5-13

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.9
Deciding Which Loop to Use

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Deciding Which Loop to Use
The while loop is a conditional pretest loop

Iterates as long as a certain condition exits
Validating input
Reading lists of data terminated by a sentinel

The do-while loop is a conditional posttest loop
Always iterates at least once
Repeating a menu

The for loop is a pretest loop
Built-in expressions for initializing, testing, and updating
Situations where the exact number of iterations is known

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.10
Nested Loops

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Nested Loops

A nested loop is a loop inside the body of
another loop
Inner (inside), outer (outside) loops:

for (row=1; row<=3; row++) //outer
for (col=1; col<=3; col++)//inner

cout << row * col << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Nested for Loop in Program 5-14

Inner Loop

Outer Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Nested Loops - Notes
Inner loop goes through all repetitions for
each repetition of outer loop

Inner loop repetitions complete sooner
than outer loop

Total number of repetitions for inner loop
is product of number of repetitions of the
two loops.

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.11
Using Files for Data Storage

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using Files for Data Storage
Can use files instead of keyboard, monitor
screen for program input, output
Allows data to be retained between
program runs
Steps:

Open the file
Use the file (read from, write to, or both)
Close the file

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Files: What is Needed
Use fstream header file for file access
File stream types:
ifstream for input from a file
ofstream for output to a file
fstream for input from or output to a file

Define file stream objects:
ifstream infile;
ofstream outfile;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Opening Files
Create a link between file name (outside the program)
and file stream object (inside the program)
Use the open member function:

infile.open("inventory.dat");
outfile.open("report.txt");

Filename may include drive, path info.
Output file will be created if necessary; existing file will
be erased first
Input file must exist for open to work

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Testing for File Open Errors
Can test a file stream object to detect if an open
operation failed:

infile.open("test.txt");
if (!infile)
{
cout << "File open failure!";

}

Can also use the fail member function

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using Files

Can use output file object and << to send
data to a file:
outfile << "Inventory report";

Can use input file object and >> to copy
data from file to variables:
infile >> partNum;
infile >> qtyInStock >>
qtyOnOrder;

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using Loops to Process Files

The stream extraction operator >> returns
true when a value was successfully read,
false otherwise

Can be tested in a while loop to continue
execution as long as values are read from
the file:
while (inputFile >> number) ...

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Closing Files
Use the close member function:
infile.close();
outfile.close();

Don’t wait for operating system to close
files at program end:

may be limit on number of open files
may be buffered output data waiting to send
to file

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Letting the User Specify a Filename

In many cases, you will want the user to
specify the name of a file for the program
to open.
In C++ 11, you can pass a string object
as an argument to a file stream object’s
open member function.

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Letting the User Specify a
Filename in Program 5-24

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Letting the User Specify a
Filename in Program 5-24

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the c_str Member Function
in Older Versions of C++

Prior to C++ 11, the open member
function requires that you pass the name
of the file as a null-terminated string, which
is also known as a C-string.
String literals are stored in memory as
null-terminated C-strings, but string
objects are not.

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Using the c_str Member Function
in Older Versions of C++
string objects have a member function named c_str

It returns the contents of the object formatted as a
null-terminated C-string.
Here is the general format of how you call the c_str
function:

stringObject.c_str()

Line 18 in Program 5-24 could be rewritten in the
following manner:

inputFile.open(filename.c_str());

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

5.12
Breaking and Continuing a Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

Breaking Out of a Loop

Can use break to terminate execution of
a loop

Use sparingly if at all – makes code harder
to understand and debug

When used in an inner loop, terminates
that loop only and goes back to outer loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc. All rights reserved.

The continue Statement

Can use continue to go to end of loop
and prepare for next repetition

while, do-while loops: go to test, repeat
loop if test passes
for loop: perform update step, then test,
then repeat loop if test passes

Use sparingly – like break, can make
program logic hard to follow

