Notes on

Basic Circuit Theory

It is the difference in electrical potential between two points

Current

It is the charge flowing in a section of a conductor per unit time:

$$
i=\frac{\mathrm{d} Q}{\mathrm{~d} t}
$$

Kirchoff's Voltage Law (KLV)

$$
v_{\mathrm{BA}}+v_{\mathrm{CB}}+v_{\mathrm{AC}}=0
$$

Kirchoff's Current Law (KLI)

$$
i_{\mathrm{A}}+i_{\mathrm{B}}+i_{\mathrm{C}}=0
$$

special case: Node's Law

Sign Conventions

Active Sign Convention:

v and i arrows have the same direction

$$
P=v i
$$

P : electrical power delivered by the device

Passive Sign Convention:

v and i arrows have opposite directions

$$
P=v i
$$

P : electrical power absorbed by the device

Basic Circuit Elements

Ideal Resistor

Passive Sign Convention:

Active Sign Convention:

Ohm's Law

Basic Circuit Elements

Ideal Capacitor

Passive Sign Convention:

$$
v \xlongequal[=]{\overbrace{i}^{i}} C \quad i=C \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

Active Sign Convention:

$$
i=-C \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

Basic Circuit Elements

Ideal Inductor

Passive Sign Convention:

Active Sign Convention:

$$
v=-L \frac{\mathrm{~d} i}{\mathrm{~d} t}
$$

Basic Circuit Elements

Ideal Voltage Source

$$
v=V_{0}
$$

independently of i
special case: if $v_{0}=0$

short circuit (i.e. an ideal wire)

Ideal Current Source

$$
i=i_{0}
$$

independently of v
special case: if $i_{0}=0$

Basic Circuit Elements

Switch

ON state

OFF state

Resistor Connections

Series Connection

Two resistors are connected in series if

- they share one terminal (A),
- such a terminal is not connected to nothing else

by Ohm's Law

$$
\begin{aligned}
& v 1=R 1 i 1 \\
& v 2=R 2 i 2
\end{aligned}
$$

by KLI

$$
i=i 1=i 2
$$

by KLV

$$
v=v 1+v 2
$$

as a consequence

$$
\begin{align*}
v & =R 1 i+R 2 i \\
& =(R 1+R 2) i \tag{*}\\
& =R_{E Q} i
\end{align*}
$$

Two resistors in series are equivalent (for external effects)
to a single resistor with a resistance

$$
R_{\mathrm{EQ}}=R 1+R 2
$$

Replacing two resistor in series with the equivalent resistor, node A is lost.
Node A voltage can be expressed in terms of the overall voltage v across the series-connected resistors

$$
v_{A}=v 2=R 2 i 2=R 2 i, \quad \text { from }\left({ }^{*}\right): \quad i=\frac{v}{R 1+R 2}
$$

$$
v_{\mathrm{A}}=\frac{R 2}{R 1+R 2} v
$$

Voltage Divider Rule

Resistor Connections

Shunt Connection

Two resistors are connected in shunt if they share both terminals
by Ohm's Law

$$
v 1=R 1 \text { i1 } \quad v 2=R 2 i 2
$$

by KLI

$$
i=i 1+i 2
$$

by KLV

$$
v=v 1=v 2
$$

as a consequence

$$
\begin{align*}
i & =v / R 1+v / R 2 \\
& =v(1 / R 1+1 / R 2) \\
& =v / R_{\mathrm{EQ}} \tag{*}
\end{align*}
$$

Two shunt-connected resistors are equivalent (for external effects) to a single resistor with a resistance

$$
R_{\mathrm{EQ}}=\frac{1}{\frac{1}{R 1}+\frac{1}{R 2}}=\frac{R 1 R 2}{R 1+R 2}
$$

Current i1 can be expressed in terms of the overall current i

$$
i 1=v 1 / R 1=v / R 1 \quad \text { from }\left({ }^{*}\right): \quad v=\frac{R 1 R 2}{R 1+R 2} i
$$

$$
i 1=\frac{R 2}{R 1+R 2} i
$$

Exercises

Ex. 1: Evaluate v3 and i4

Ex.2: Evaluate $11, v 3$, $i 4$ and $v 7$

Superposition Principle

In any linear circuit which includes more that one independent source, each output can be expressed as the sum of the contributions of each source.

$$
v o=v o^{\prime}+v o^{\prime \prime}+v o^{\prime \prime}
$$

The contribution of a source to the output is the value of the output in the circuit when the considered source is active, while the other sources are turned off.
a voltage source, when it is turned off, is equivalent to a short circuit a current source, when it is turned off, is equivalent to an open circuit

Superposition Principle

Contribution of v1 (vo')

$$
v o^{\prime}=\frac{(R 2+R 3) / / R 5}{R 1+(R 2+R 3) / / R 5} \frac{R 3}{R 2+R 3} \mathrm{v} 1
$$

Contribution of v2 (vo")

Superposition Principle

Contribution of i3 (vo'")

Superposition Principle

Overall Circuit

R1

$v o=V O^{\prime}+V O^{\prime \prime}+V O^{\prime \prime \prime}$
$v o=\frac{(R 2+R 3) / / R 5}{R 1+(R 2+R 3) / / R 5} \frac{R 3}{R 2+R 3} v 1+$
$+\frac{(R 2+R 3) / / R 1}{R 5+(R 2+R 3) / / R 1} \frac{R 3}{R 2+R 3} v 2+$
$-R 1 / / R 5 / /(R 2+R 3) \frac{R 3}{R 2+R 3}$ i3

Exercises

Ex. 1: Evaluate v3 and $i 4$

Ex.2: Evaluate i1, v3, i4 and v7

