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8.0 Complex Numbers 

 Invented as an extension of real numbers in 

order to have a number system in which all 

polynomials have roots 

 Have the unique property of representing 

and manipulating two variables as a single 

quantity 

Three way to express a complex number: 

 the Cartesian form, z a ib  

 the Polar form, (cos sin )z r iq q  

 the exponential form, iz re q
 

8.1 Definition 

If z is a complex number, then it can be 

expressed in the form  

biaz  ,     

where ,a b  and    1i . 

The real part of the complex number z is a. 

The imaginary part of the complex number z 

is b. 
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                       biaz   

)(Im)(Re zzz   

 A complex number is represented by a 

single variable, even though it is composed 

of two parts. 

 The standard symbol for the set of all 

complex numbers is . 

 

 

Example 8.1 

(a) If iz 32
1

 , then  

     the real part of 1 1, Re( ) 2z z , and  

     the imaginary part of 1 1, Im( ) 3z z . 

(b) Simplify  

      (i) 17 16 1 4(4) 1 1i i i i i . 

(ii) 99i . 

(iii) 44 6i . 

 What is ni  for a general positive integer 

n? 
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Example 8.2 

Find all the roots of the equation 
2 4 0x , if x . 
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8.2 Basic Operations on Complex Numbers 

Given that  biaz 
1

 and dicz 
2

  

where  1 2,z z . 

3.2.1 Equality 

Two complex numbers are equal if and only if 

their real parts are equal and their imaginary 

parts are equal.   

If 
21

zz  ,  then a c  and b d . 

 

Example 8.3 

For what values of x and y is 

3 4 (2 )x i y x xi  ? 

 

8.2.2 Addition and subtraction 

If 1z a bi  and 2z c di  are two complex 

numbers, then 

1 2z z a c b d i  
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8.2.3 Multiplications 

If biaz 
1

 and dicz 
2

 are two complex 

numbers, and k is a constant, then 

(i)    dicbiazz 
21

 

    ibcadbdac   

(ii) kbikakz 
1

 

Multiplication technique: 

 multiply in the usual way and use property 

of i 
2
 = -1 

8.2.4 Division and conjugate 

If  biaz   then the conjugate of z is 

denoted as z a bi . 
2 2 2i iz z a b a b a b z . 

1
2

1 z z
z

z zz z
 

Division technique: 

 Multiply numerator and denominator by 

the conjugate of the denominator 

Example 8.4 

Simplify 3 5 2i i . 
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Solution 

3 3 5 2
5 2 5 2 5 2
i i i
i i i

 

2

2
15 6 6 15 6 15

29 29 2925 4

i i i
i

i
 

Example 8.5 

Given that iz 21
1

 , iz 43
2

  and 

iz  2
3

 are complex numbers.   

(a) Find 
21

2zz  . 

(b) Find 
32

zz  . 

(c) Find 1 3z z . 

(d) Write 
1

2
z  in bia   form. 

(e) Find 2

3

z
z

, and express it in bia   form. 
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8.3 Graphing Complex Numbers 

8.3.1 The Complex Plane/Argand diagram 

Complex numbers are represented by locations 

in a two-dimensional display called the 

complex plane. 

 Every complex number has a unique 

location in the complex plane, as illustrated 

by the three examples shown here. 

 The horizontal axis represents the real part, 

while the vertical axis represents the 

imaginary part. 
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Note 

The real number line is the same as the x-axis 

of the complex plane. 

 

Example 8.6 

Sketch the following complex numbers on the 

same diagram. 

(a) iz 23
1

          (b) iz 23
2

  

(c) iz 23
3

       (d) iz 23
4

  

 

 

 

 

Remark 

Real numbers are special cases of complex 

numbers. For instance, the real number 2 is 

2 0i . 
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8.3.2 Polar form of Complex Numbers  

In rectangular coordinates, the x and y specify 

a complex number z x yi  by giving the 

distance x right and the distance y up. 

Polar coordinates specify the same point z by 

stating how far r away from the origin 0, and 

the angle q  for the line from the origin to the 

point. 

 

 

 

 

 

 

 

 

 

 

 

The distance r, is known as the modulus of z, 

and is denoted as z . 

2 2r z x y . 
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Angle   is called the argument of z, denoted 

Arg (z). 

  is known as the principle argument if 

p q p . 

From the diagram above, we find the 

following three relations: 

x

y
tan , cosrx  , and sinry  . 

If we apply these relations to our complex 

number z x yi , then we get an alternate 

description for z, 

)sin(cos  irz  . 

 

Example 8.7 

Express the following complex numbers in 

polar form. 

(a) iz 1
1

        (b) iz  1
2

 

(c) iz 22
3

    (d) iz 22
4

  
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Products and quotients in polar form 

Consider two complex numbers: 

1 1 1 1(cos sin )z r iq q  

2 2 2 2(cos sin )z r iq q  

Multiplying: 

1 2 1 2 1 2 1 2cos sinz z r r iq q q q  

so 1 2 1 2z z r r  and 1 2 1 2Arg( )z z q q . 

Similarly for quotients of complex numbers in 

polar form 

1 1 1 1

2 2 2 2

(cos sin )
(cos sin )

z r i
z r i

q q
q q

 

1
1 2 1 2

2
cos sin

r
ir q q q q . 

so 1 1

2 2

z r
z r  and 1

1 2
2

Arg
z
z q q . 

Thus, 

1 2 1 2z z z z  and 

1 2 1 2Arg( ) Arg( ) Arg( )z z z z  

11

2 2

zz
z z  and 1

1 2
2

Arg Arg( ) Arg( )
z

z zz  
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8.4 De Moivre’s Theorem and its 

Applications 

De Moivre’s Theorem: 

If   sincos irz   and n , then  

cos sinn nz r n i nq q . 

Example 8.8 

(a) Write i1  in the polar form, then find 

the value of  12
1 i  by using De 

Moivre’s Theorem. 

(b) Find 
100 02 cos10 sin10i . 

Solution 

(a) Let 1z i . 
2 2 2 21 ( 1) 2z a b . 

As z is in the fourth quadrant, 

1Arg( ) tan (1)
4

z
p

q  

So 2 cos sin4 4z ip p
. 

Using De Moivre's Theorem, 
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1212 12 12
1 2 cos sin

4 4
i i

p p
 

64 cos 3 sin 3 64ip p  

(b) Complete the solution… 

Example 8.9 

Simplify 
6

4
1

1 3

i

i
. 

Example 8.10 

Simplify (i) 
4

3
3 3

3

i

i
 (ii) 

4

3
3

1

i

i
 

 

Ans.: (i) 
81
2
i
 

 (ii) 
7 7

4 2 cos sin
12 12

i
p p
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De Moivre ‘s Theorem can be used to find all 

of the nth roots of any number. 

sin sin 2kq q p   and 

cos cos 2kq q p  for all k . 

 
1

cos sin nr iq q     

       
1/

cos 2 sin 2
n

r k i kq p q p  

       1/ 2 2
cos sinn k k

r i
n n

q p q p
 

for 1,,2,1,0  nk   

 

Substituting 0, 1, 2, , 1k n  yields the nth 

roots of the given complex number. 

Example 8.11 

Let 
1
2z , find the sixth root of z. 

 

Example 8.12 

Find the three cube roots of 
1 1
2 2z i . 
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Complex Roots of Unity 

 Solutions of 1nz  with n  are called 

roots of unity 

 Zeros of polynomial 1nz , so expect n 

solutions 

Example: Cube root of unity 

 3n : 3 1z  

1, 0z q  

3 1 cos 2 sin 2z n i np p  

1 3 2 21 cos sin3 3
n nz ip p

 

Hence, 

1 1z  

2
2 2 1 3

cos sin
3 3 2 2

z i i
p p

 

3
4 4 1 3

cos sin
3 3 2 2

z i i
p p

 

 

 



 17 

 

 

 

 

 

 

 

 

 

 

Now look at what happens when we square 

2 :z  

2
2

2 3
1 3 1 3
2 2 2 2

z i i z  

Similarly 
2

3 2z z . 

Hence the roots of unity can be denoted as 
21, ,w w  

where w  is a complex root of unity. 

z
3

z
2

z1

Im

Re
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It can also be shown that 

21 0w w . 

 8n : 

 

 What relationship would exists between the 

roots? 

 Can you deduce a pattern for the 

relationship between the n
th

 roots of unity? 

In general the n
th

 roots of unity 
1
1
n

z  

 will produce n equally spaced roots, 

separated by angles of 
2
n
p

, 

 all roots will lie on the unit circle 



 19 

 The complex numbers form vertices of an 

n-sided polygon 

 

2n

z
6

z5

z
4

z
1

z2

z
3

Im

Re

z
4

z
5

z6

Im

Re

z
1

z2

z
3
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8.5 EULER’S FORMULA 

 Polar form of complex numbers 

Definition: Euler’s Formula 

Euler’s formula states that 

cos sinie iq q q 

It follows that  

cos sinine n i nq q q 

Form the definition, if z is any complex 

number with modulus r and Arg(z) q , then  

cos sin

(cos sin )

i

z r ir

r i

re q

q q

q q  

Example 8.13 

Express the following complex numbers in the 

form of ire q . 

(a) 2 2 3i             (b) 2 – 4i 

(c) 5i                     (d) 6 
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Solution 

(a) 
222 2 3 (2) 2 3 4i r  

1 2 3tan
2 3

p
q  

Thus, 32 2 3 4
i

i e
p

 

(b) Complete the solution… 

Example 8.14 

Find complex number expressions, in 

Cartesian form, for 

(a) 4 1 1
cos sin
4 4 2 2

i
e i i

p p p
. 

(b)  ie  

(c)  ie p  
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Conjugation, Multiplication, Division in 

Polar Form 

 If iz re q , then i i iz re re req q q 

 So conjugation corresponds to q q  

 For two numbers in polar form, iz re q  

and iw e fr , we have 

( )izw r e q fr  

and   ( )iz r
e

w
q f

r  

 So to multiply/divide: multiply/divide 

moduli, and add/subtract angles 
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8.5.1 Euler’s Formula and the nth Power of 

a Complex Number 

We know that a complex number can be 

express as  iz re q , then  
2 2 2iz r e q  
3 3 3iz r e q  
4 4 4iz r e q

 

n n inz r e q  

Example 8.15 

Express the complex number 1 3z i  in 

the form of ire q . Then find  

(a) 2z  (b) 3z  (c)  7z  
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8.5.2 Euler’s Formula and the nth Roots of 

a Complex Number 

The n-th roots of a complex number can be 

found using the Euler’s formula. Note that if 
n iz re q ,   then, 

21 1 k
i
ni n nz re r e

q p
q  

for 0,1,2, , 1k n  

Substituting 0,1,2, , 1k n  yields the nth 

roots of the given complex number. 

Example 8.16 

Solve  2 1z i  . 
 

 

 

Example 8.17 

Find all the roots of  3 3 4z i . 

 

 

Ans.: cube roots of 3+4i ≈ 1.63+0.52i, 

−1.26+1.15i, −0.36−1.67i 
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Example 8.18 

Find all the roots of  3 3z i . 

 

 

Example 8.19 

(a) Solve the equation 
32 216z i i  

(b) Prove that 4 2cos4 8cos 8cos 1q q q , 

hence find the roots of the equation 
4 216 16 3 0p p . 

 

 
Ans.: (b)  1 cos 30 0.866p  2 cos 60 0.5p  

 3 cos 120 0.5p  4 cos 150 0.866p  
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Cos and sin as complex exponentials 

Definition 

1cos 2
i ie eq qq  

1sin 2
i ie eq qq  

 For real q , these give the real and 

imaginary part of ie q  respectively 

 For complex q , they provide the “natural” 

extensions of cos and sin to the whole 

complex plane 
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Application to higher-degree equations 

Certain higher-degree equations can be 

brought into quadratic form and solved this 

way. For example, the 6th-degree equation in 

x: 

6 34 8 0x x  

can be rewritten as: 

3 2 3( ) 4( ) 8 0x x  

or, equivalently, as a quadratic equation in a 

new variable u: 

2 4 8 0u u  

where 3u x . 

Solving the quadratic equation for u results in 

the two solutions: 

2 2u i  

Thus 3 2 2x i  
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Finding the three cube roots of  2 + 2i – the 

other three solutions for x will be their 

complex conjugates  

Rewriting the right-hand side using Euler's 

formula: 

3 1 3 8 1
3 2 4 2 42 2

k
i i

x e e
p p

 

(since e
2kπi

 = 1), gives the three solutions: 

1 8 1

2 122 , 0,1,2
k

i
x e k

p
 

Using Eulers' formula again together with 

trigonometric identities such as  

cos(π/12) = (√2 + √6) / 4, and adding the 

complex conjugates, gives the complete 

collection of solutions as: 

 1,2 1x i  

 3,4
1 3 1 3

2 2
x i  

and 

http://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/Euler%27s_formula
http://en.wikipedia.org/wiki/Euler%27s_formula
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 5,6
1 3 1 3

2 2
x i  

 

Example 8.20 

Find the fifth-roots of 3 i  expressed in 

trigonometric form. 

 

 

 

Ans.: The five fifth-roots are 

1 5
1 2 cos6 sin6z i  

1 5
2 2 cos78 sin78z i  

1 5
3 2 cos150 sin150z i  

1 5
4 2 cos222 sin222z i  

1 5
5 2 cos294 sin294z i  


