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8.0 Complex Numbers

» Invented as an extension of real numbers in
order to have a number system in which all
polynomials have roots

» Have the unique property of representing
and manipulating two variables as a single
quantity

Three way to express a complex number:

e the Cartesian form, z =a + b
e the Polar form, z = r(cosf + isinf)

e the exponential form, z = re*

8.1 Definition

If z Is a complex number, then it can be
expressed in the form

Z=a-+Dhi,
where a,b € R and i=+/-1.

The real part of the complex number z is a.
The imaginary part of the complex number z
IS b.



Z=a+bhi
z=Re(z) +Im(z)

e A complex number is represented by a
single variable, even though it Is composed
of two parts.

e The standard symbol for the set of all
complex numbers is C.

Example 8.1
(@) If z, =2+3i, then
the real part of z;, Re(z;) =2, and

the imaginary part of z;, Im(z,) = 3.

(b) Simplify
(i) AT 16l _ A()FL
(ii) 7.
(iii) 4i* —6.

What is 3" for a general positive integer
n?



Example 8.2

Find all the roots of the equation
" +4=0,ifzeC.



8.2 Basic Operations on Complex Numbers

Giventhat z, =a+bi and z, =c+di
where z,,z, € C.

3.2.1 Equality

Two complex numbers are equal if and only if
their real parts are equal and their imaginary
parts are equal.

If 2z, =2z,, thena=cand b=d.

Example 8.3

For what values of x and y Is
3r+4i=Q2y+x)+xi?

8.2.2 Addition and subtraction

If 2, =a+ bt and 2z, = c+ di are two complex
numbers, then
2y E£2y= a+c £ b+d 1



8.2.3 Multiplications

If z =a+bi and z, =c +di are two complex
numbers, and k Is a constant, then
(i)z,-z, =(a+bi)-(c+di)
=(ac—bd )+ (ad +bc)i
(i) kz, = ka + kbi

Multiplication technique:

e multiply in the usual way and use property
ofi°=-1

8.2.4 Division and conjugate

If z=a+bi then the conjugate of z Is
denoted as zZ = a — bs.

_ . . 9 2)
22Z2= a+bl - a—bl =a” +b" =252.
L1z oz
Z e — — = 5
AR A VA

Division technique:

e Multiply numerator and denominator by
the conjugate of the denominator

Example 8.4
Simplify 3:+-5—2s.



Solution
3o % .5+27:
5—21 5—21 5+2i

_15i46i° _—6+15i_ 6 15
95442 29 29 29"
Example 8.5

Given that z, =1-2i, z, =-3+4i and
z, =—2—1 are complex numbers.

(@) Find z, + 2z,.

(b) Find z, - z,.

(c) Find z; - z,.

(d) Write 3—1 In a+ bi form.

(e) Find 2—2 and express it in a + bi form.
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8.3 Graphing Complex Numbers
8.3.1 The Complex Plane/Argand diagram

Complex numbers are represented by locations
In a two-dimensional display called the
complex plane.

» Every complex number has a unigue
location in the complex plane, as illustrated
by the three examples shown here.

» The horizontal axis represents the real part,
while the vertical axis represents the
Imaginary part.
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Note

The real number line iIs the same as the x-axis
of the complex plane.

Example 8.6

Sketch the following complex numbers on the
same diagram.

(@) z, =3+2i (b) z, =3-2i
(c)z,=-3-21 (d)z,=-3+2i

Remark

Real numbers are special cases of complex
numbers. For instance, the real number 2 is
2+ 01.



8.3.2 Polar form of Complex Numbers

In rectangular coordinates, the x and y specify
a complex number z = z + 42 by giving the
distance x right and the distance y up.

Polar coordinates specify the same point z by
stating how far r away from the origin 0, and
the angle 6 for the line from the origin to the
point.

1

The distance r, Is known as the modulus of z,
and is denoted as |z].

r:\z\:\/:v2—|—y2.
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Angle 4 Is called the argument of z, denoted

Arg (2).
@ 1s known as the principle argument if
—r<0<.

From the diagram above, we find the
following three relations:

tang :X, X=rcoséd,and y=rsiné.

X

If we apply these relations to our complex
number z = z + yi, then we get an alternate
description for z,

Z=r(cosd+1sin ),

Example 8.7

Express the following complex numbers in
polar form.
(@) z, =1+I (b) z, =-1+1

(c)z,=-2+21 (d)z,=-2-2i
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Products and quotients in polar form
Consider two complex numbers:
2 =17 (cosf; +isinb,)
2y =1y (cosf, +isinb,)
Multiplying:
2129 =TT lcos 0, +0, +isin 0, + 0, ]
SO [2125| = 17 and Arg(2,2y) = 0, +0,.

Similarly for quotients of complex numbers in
polar form

2, 1(cosf, +isind,)
%y 1y(cosby +isinb,)

:ﬁ[cos 0, —0, +isin 6, —0,

5
2 13 2
so L =1and Arg “L =0, —0,.
%9 5 <9
Thus,

Arg(2122):Arg(zl)+Arg(z2)
_ A

N

and Arg = Arg(z;) — Arg(z,)
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8.4 De Moivre’s Theorem and its
Applications

De Moivre’s Theorem:
If z=r(cos@+isin@)and n € R, then

2" =7r" cosnb +isinnf .

Example 8.8

(a) Write 1—1 in the polar form, then find

the value of (1—i)” by using De
Moivre’s Theorem.

10
(b) Find [ﬁ cos10° + isin10° ] |

Solution
(a) Let z=1—1.

=~la” +b° :\/12 +(—1)* =+2.

As z is in the fourth quadrant,
70

Arg(z)=0=tan '(1)= 1

_ Ty e T
S0 2z =+/2 cos 1 +7s1in i

Using De Moivre's Theorem,

13



1—i 2= 2 = COS —12—7T +1sin —12—7T

4 4
—64 cos —3m +1isin —37® =-—-64

(b) Complete the solution...

Example 8.9

. 1+
Simplify .
1-iv3

Example 8.10

6

3t B
Simplify (1) \/§+i3 (i) —E

Ans.: (i) 5"

r T ..
(i) 4v/2 cos —19 TS 45

14



De Moivre ‘s Theorem can be used to find all
of the nth roots of any number.

sinf =sin 0+ k27 and
cos =cos 0 +Kk27 forall k€ Z.

1
r cosl +i1sinf »

= rcos 0+k2m +1sin 0 + k27

Yl cos 0 +?7/j:27r + ¢sin 0 +527T

1/n

=7

fork=012,---,n-1

Substituting £ =0, 1, 2,---,n —1 yields the nth
roots of the given complex number.
Example 8.11

Let 2 = —%, find the sixth root of z.

Example 8.12
1

Find the three cube roots of 2z = —% -+ iz‘.
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Complex Roots of Unity

» Solutions of z" =1 with n € N are called
roots of unity

> Zeros of polynomial 2" —1, so expect n
solutions

Example: Cube root of unity
en=3:2"=1
zl=1,0=0

23 =1 cos 2nm +81n 2n7

.'.2211/3 COS QTLTW + 2sIn 2%
Hence,
27T . (27 1 .
22:cos§ +zsm? :—54— l

V3
2
= cos| A7) s igin A7) = 1 V3,
cgq = COS 3 1511 3 = 9 (4
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Now look at what happens when we square

.. 2
Similarly z; = ==z,.

Hence the roots of unity can be denoted as

2
1, w,w

where w Is a complex root of unity.

17



It can also be shown that

1+ w-+ W’ =0.
o n—=2&:

11 1 1
7R N

(-1,0) 1,0)
11 1 1
CE R R

0,-1)

What relationship would exists between the
roots?

Can you deduce a pattern for the
relationship between the n™ roots of unity?

In general the n™ roots of unity z = 1"

e will produce n equally spaced roots,
separated by angles of 2%

e all roots will lie on the unit circle

18



e The complex numbers form vertices of an
n-sided polygon

19



8.5 EULER’S FORMULA

e Polar form of complex numbers

Definition: Euler’s Formula

Euler’s formula states that
e’ = cosf +isinf

It follows that

mo

e = cosnl + isinnfd

Form the definition, if z Is any complex
number with modulus r and Arg(z) 4, then

2z =rcosf+irsinf
= r(cosf + isin6)
i0

—Te

Example 8.13

Express the following complex numbers in the
form of re®.

() 24 2+/3i (b) 2 — 4i
(c) —5i (d) —6

20



Solution

(a) 2+2\/§7j:>'r:\/(2)2+ 203" =4

0=tan " [MJ _ T
2
Thus, 2 +2+/3i = 4¢3’
(b) Complete the solution...
Example 8.14
Find complex number expressions, in
Cartesian form, for
(a) e%i — Cos & - jsin . = 1 +iz’
4 4 2 2
(b) e

(C) ez'7r

21



Conjugation, Multiplication, Division In
Polar Form

o If z=1r¢e" then z=re" =re” =re ¥

e SO conjugation correspondsto 6 — —6
e For two numbers in polar form, z = re?
and w = pe’”, we have

ZW = T,O@i(9+¢)
and i — fei(e_ﬁb)
w o p

e S0 to multiply/divide: multiply/divide
moduli, and add/subtract angles

22



8.5.1 Euler’s Formula and the nth Power of

a Complex Number

We know that a complex number can be

express as z=re", then

2 2 120
- =re
1360
Z3:T3623
4 4 140
2 =r'e
zn:rneinﬁ

Example 8.15

Express the complex number z = —1++/3i in

the form of re”. Then find
(a) 2 (b) 2’ (c) 2

23



8.5.2 Euler’s Formula and the nth Roots of
a Complex Number

The n-th roots of a complex number can be
found using the Euler’s formula. Note that if
2" =re”, then,

1 1 Z.H—I—Q/mr

n—png M

for k=0,12,---.n—1

Substituting £ =0,1,2,---,n —1 yields the nth
roots of the given complex number.

0

7 = [7“6Z

Example 8.16
Solve 2’ =1+1.

Example 8.17
Find all the roots of 2° = 3+ 4i.

Ans.: cube roots of 3+41 =~ 1.63+0.521,
—1.26+1.151, —0.36—1.67i
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Example 8.18
Find all the roots of 2° =+/3 —i.

Example 8.19

(a) Solve the equation z 4 2i * = 2163

(b) Prove that cos40 = 8cos”  —8cos” 0 +1,
hence find the roots of the equation
16p* —16p° +3 = 0.

Ans.: (b) p, =cos 30° =0.866 p, =cos 60° =0.5
p; = cos 120° =—-0.5 p, = cos 150° = —0.866

25



Cos and sin as complex exponentials

Definition
cos 0 :% e —I—G_ie

. 1 ; .
sin 6 =5 e e

e Forreal 6, these give the real and
imaginary part of ¢ respectively

e For complex 8, they provide the “natural”
extensions of cos and sin to the whole

complex plane
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Application to higher-degree equations

Certain higher-degree equations can be
brought into quadratic form and solved this
way. For example, the 6th-degree equation in
X:

20 — 473 +&8=0
can be rewritten as:
(z°) —4(z*)+8=0

or, equivalently, as a quadratic equation in a
new variable u:

u2—4u—|—8:()
where v = 2°.

Solving the guadratic equation for u results in
the two solutions:

u=2=x2

Thus 2> =249



Finding the three cube roots of 2 + 21 — the
other three solutions for x will be their
complex conjugates

Rewriting the right-hand side using Euler's
formula:

3 1 . 3 8k+1 .
3 — — 71 — TTFZ
r’ =224 =922¢

2 = 1), gives the three solutions:

(since e

1o8k+1
r =22¢ 12 ,k=0,12

Using Eulers' formula again together with
trigonometric identities such as

cos(n/12) = (N2 + V6) / 4, and adding the
complex conjugates, gives the complete
collection of solutions as:

1+3 143
3334: :|: 1
’ 2 2

and

28
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Example 8.20

Find the fifth-roots of </3 + 7 expressed in
trigonometric form.

Ans.: The five fifth-roots are

1/ 5

21 =27 cos6” +isin6°

2y = 27” cos78° +isin78°

2y =27 cos150° +isin150°
1/5

2z, =2 c08222° 4 isin222°

2 =277 c0s294° + isin294°
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