

Chapter 8 Complex Numbers

8.1 Definitions

8.2 Operations on complex numbers

8.3 Graphing complex numbers, Polar form of complex numbers

8.4 De Moivre's Theorem and its Applications

8.5 Euler's Formula

8.0 Complex Numbers

- Invented as an extension of real numbers in order to have a number system in which all polynomials have roots
- Have the unique property of representing and manipulating *two* variables as a *single* quantity

Three way to express a complex number:

- the Cartesian form, $z = a + ib$
- the Polar form, $z = r(\cos \theta + i \sin \theta)$
- the exponential form, $z = re^{i\theta}$

8.1 Definition

If z is a **complex number**, then it can be expressed in the form

$$z = a + bi,$$

where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$.

The **real part** of the complex number z is a .
The **imaginary part** of the complex number z is b .

$$z = a + bi$$

$$z = \operatorname{Re}(z) + \operatorname{Im}(z)$$

- A complex number is represented by a single variable, even though it is composed of two parts.
- The standard symbol for the set of all complex numbers is \mathbb{C} .

Example 8.1

(a) If $z_1 = 2 + 3i$, then

the real part of z_1 , $\operatorname{Re}(z_1) = 2$, and

the imaginary part of z_1 , $\operatorname{Im}(z_1) = 3$.

(b) Simplify

(i) $i^{17} = i^{16+1} = i^{4(4)+1} = i^1 = i$.

(ii) i^{99} .

(iii) $4i^4 - 6$.

What is i^n for a general positive integer n ?

Example 8.2

Find all the roots of the equation
 $x^2 + 4 = 0$, if $x \in \mathbb{C}$.

8.2 Basic Operations on Complex Numbers

Given that $z_1 = a + bi$ and $z_2 = c + di$

where $z_1, z_2 \in \mathbb{C}$.

3.2.1 Equality

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal.

If $z_1 = z_2$, then $a = c$ and $b = d$.

Example 8.3

For what values of x and y is

$$3x + 4i = (2y + x) + xi ?$$

8.2.2 Addition and subtraction

If $z_1 = a + bi$ and $z_2 = c + di$ are two complex numbers, then

$$z_1 \pm z_2 = a + c \pm b + d i$$

8.2.3 Multiplications

If $z_1 = a + bi$ and $z_2 = c + di$ are two complex numbers, and k is a constant, then

$$\begin{aligned} \text{(i)} \ z_1 \cdot z_2 &= (a + bi) \cdot (c + di) \\ &= (ac - bd) + (ad + bc)i \end{aligned}$$

$$\text{(ii)} \ kz_1 = ka + kbi$$

Multiplication technique:

- multiply in the usual way and use property of $i^2 = -1$

8.2.4 Division and conjugate

If $z = a + bi$ then the **conjugate** of z is denoted as $\bar{z} = a - bi$.

$$z \cdot \bar{z} = a + bi \cdot a - bi = a^2 + b^2 = |z|^2.$$

$$z^{-1} = \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{|z|^2}$$

Division technique:

- Multiply numerator and denominator by the conjugate of the denominator

Example 8.4

Simplify $3i \div 5 - 2i$.

Solution

$$\begin{aligned}\frac{3i}{5-2i} &= \frac{3i}{5-2i} \cdot \frac{5+2i}{5+2i} \\ &= \frac{15i + 6i^2}{25 - 4i^2} = \frac{-6 + 15i}{29} = -\frac{6}{29} + \frac{15}{29}i\end{aligned}$$

Example 8.5

Given that $z_1 = 1 - 2i$, $z_2 = -3 + 4i$ and $z_3 = -2 - i$ are complex numbers.

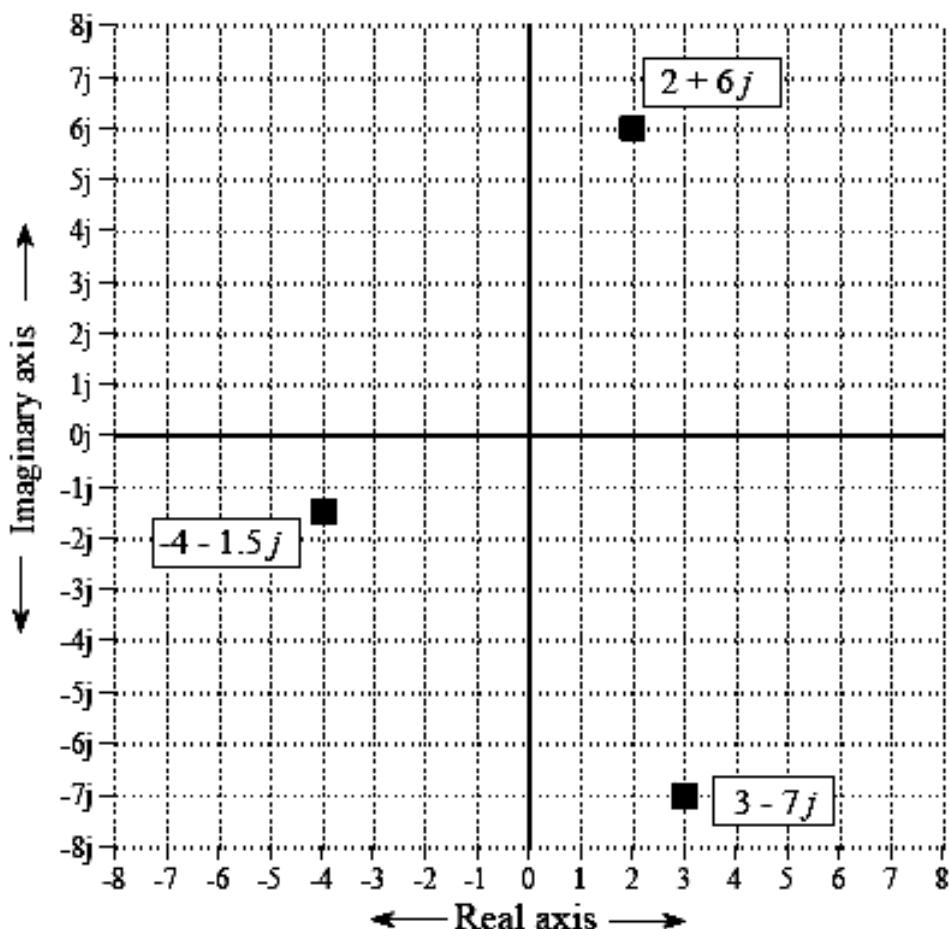
- (a) Find $z_1 + 2z_2$.
- (b) Find $z_2 \cdot z_3$.
- (c) Find $\overline{z_1} \cdot z_3$.
- (d) Write $\frac{2}{z_1}$ in $a + bi$ form.
- (e) Find $\frac{z_2}{z_3}$, and express it in $a + bi$ form.

8.3 Graphing Complex Numbers

8.3.1 The Complex Plane/Argand diagram

Complex numbers are represented by locations in a two-dimensional display called the **complex plane**.

- Every complex number has a unique location in the complex plane, as illustrated by the three examples shown here.
- The horizontal axis represents the real part, while the vertical axis represents the imaginary part.



Note

The *real number line* is the same as the *x-axis* of the complex plane.

Example 8.6

Sketch the following complex numbers on the same diagram.

- (a) $z_1 = 3 + 2i$
- (b) $z_2 = 3 - 2i$
- (c) $z_3 = -3 - 2i$
- (d) $z_4 = -3 + 2i$

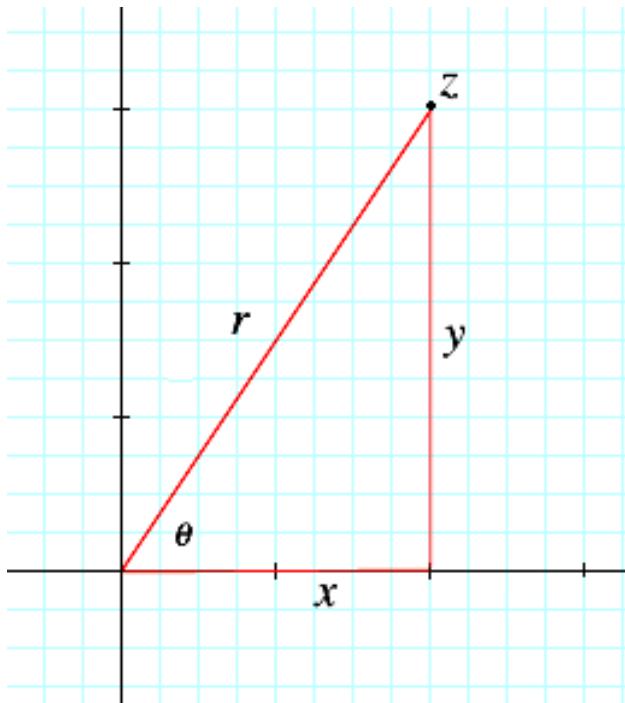
Remark

Real numbers are special cases of complex numbers. For instance, the real number 2 is $2 + 0i$.

8.3.2 Polar form of Complex Numbers

In rectangular coordinates, the x and y specify a complex number $z = x + yi$ by giving the distance x right and the distance y up.

Polar coordinates specify the same point z by stating how far r away from the origin 0, and the angle θ for the line from the origin to the point.



The distance r , is known as the **modulus** of z , and is denoted as $|z|$.

$$r = |z| = \sqrt{x^2 + y^2}.$$

Angle θ is called the **argument** of z , denoted $\text{Arg}(z)$.

θ is known as the **principle argument** if $-\pi \leq \theta \leq \pi$.

From the diagram above, we find the following three relations:

$$\tan \theta = \frac{y}{x}, \quad x = r \cos \theta, \quad y = r \sin \theta.$$

If we apply these relations to our complex number $z = x + yi$, then we get an alternate description for z ,

$$z = r(\cos \theta + i \sin \theta).$$

Example 8.7

Express the following complex numbers in polar form.

- (a) $z_1 = 1 + i$
- (b) $z_2 = -1 + i$
- (c) $z_3 = -2 + 2i$
- (d) $z_4 = -2 - 2i$

Products and quotients in polar form

Consider two complex numbers:

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$
$$z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$$

Multiplying:

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$

so $|z_1 z_2| = r_1 r_2$ and $\operatorname{Arg}(z_1 z_2) = \theta_1 + \theta_2$.

Similarly for quotients of complex numbers in polar form

$$\frac{z_1}{z_2} = \frac{r_1(\cos \theta_1 + i \sin \theta_1)}{r_2(\cos \theta_2 + i \sin \theta_2)}$$
$$= \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)].$$

so $\left| \frac{z_1}{z_2} \right| = \frac{r_1}{r_2}$ and $\operatorname{Arg} \frac{z_1}{z_2} = \theta_1 - \theta_2$.

Thus,

$$|z_1 z_2| = |z_1| |z_2| \text{ and}$$
$$\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$$

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \text{ and } \operatorname{Arg} \frac{z_1}{z_2} = \operatorname{Arg}(z_1) - \operatorname{Arg}(z_2)$$

8.4 De Moivre's Theorem and its Applications

De Moivre's Theorem:

If $z = r(\cos \theta + i \sin \theta)$ and $n \in \mathbb{R}$, then

$$z^n = r^n \cos n\theta + i \sin n\theta .$$

Example 8.8

(a) Write $1 - i$ in the polar form, then find the value of $(1 - i)^{12}$ by using De Moivre's Theorem.

(b) Find $[\sqrt{2} \cos 10^0 + i \sin 10^0]^{10}$.

Solution

(a) Let $z = 1 - i$.

$$|z| = \sqrt{a^2 + b^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}.$$

As z is in the fourth quadrant,

$$\operatorname{Arg}(z) = \theta = \tan^{-1}(1) = -\frac{\pi}{4}$$

$$\text{So } z = \sqrt{2} \cos -\frac{\pi}{4} + i \sin -\frac{\pi}{4} .$$

Using De Moivre's Theorem,

$$\begin{aligned}
1-i^{12} &= \sqrt{2}^{12} \cos -\frac{12\pi}{4} + i \sin -\frac{12\pi}{4} \\
&= 64 \cos -3\pi + i \sin -3\pi = -64
\end{aligned}$$

(b) Complete the solution...

Example 8.9

Simplify $\frac{1+i^6}{1-i\sqrt{3}^4}$.

Example 8.10

Simplify (i) $\frac{3-3i^4}{\sqrt{3}+i^3}$ (ii) $\frac{\sqrt{3}+i^4}{1-i^3}$

Ans.: (i) $\frac{81i}{2}$

(ii) $4\sqrt{2} \cos -\frac{7\pi}{12} + i \sin -\frac{7\pi}{12}$

De Moivre ‘s Theorem can be used to find all of the **n th roots** of any number.

$$\sin \theta = \sin \theta + k2\pi \quad \text{and}$$

$$\cos \theta = \cos \theta + k2\pi \quad \text{for all } k \in \mathbb{Z}.$$

$$\begin{aligned} r \cos \theta + i \sin \theta & \stackrel{1/n}{=} \\ &= r \cos \theta + k2\pi + i \sin \theta + k2\pi & 1/n \\ &= r^{1/n} \left(\cos \frac{\theta + k2\pi}{n} + i \sin \frac{\theta + k2\pi}{n} \right) \end{aligned}$$

for $k = 0, 1, 2, \dots, n-1$

Substituting $k = 0, 1, 2, \dots, n-1$ yields the n th roots of the given complex number.

Example 8.11

Let $z = -\frac{1}{2}$, find the sixth root of z .

Example 8.12

Find the three cube roots of $z = -\frac{1}{2} + \frac{1}{2}i$.

Complex Roots of Unity

- Solutions of $z^n = 1$ with $n \in \mathbb{N}$ are called roots of unity
- Zeros of polynomial $z^n - 1$, so expect n solutions

Example: Cube root of unity

- $n = 3$: $z^3 = 1$

$$|z| = 1, \theta = 0$$

$$z^3 = 1 \cos 2n\pi + i \sin 2n\pi$$

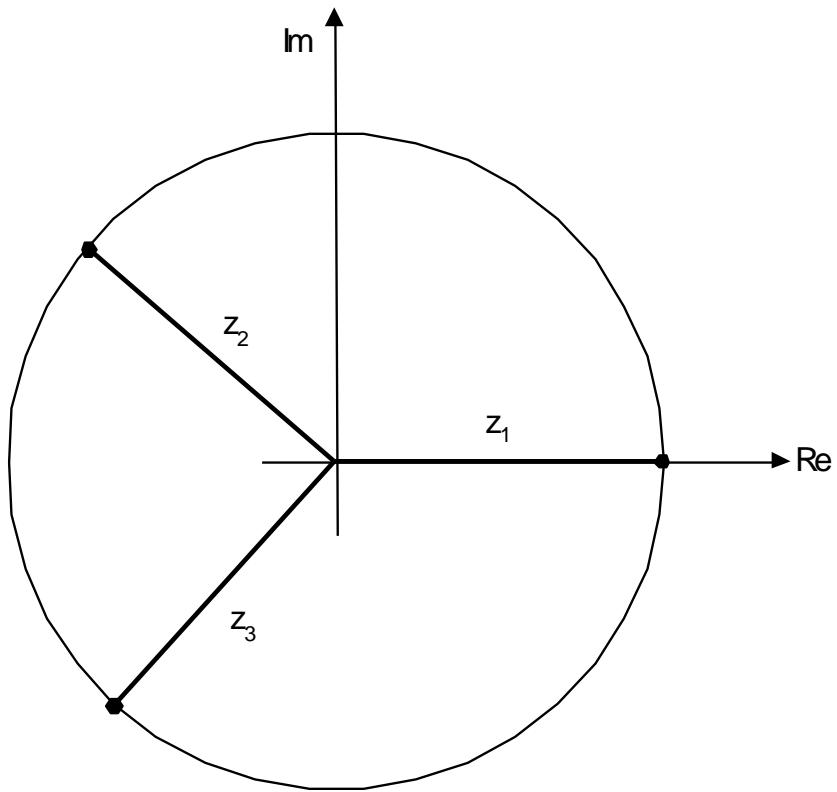
$$\therefore z = 1^{1/3} \cos \frac{2n\pi}{3} + i \sin \frac{2n\pi}{3}$$

Hence,

$$z_1 = 1$$

$$z_2 = \cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$z_3 = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$



Now look at what happens when we square z_2 :

$$z_2^2 = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right)^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i = z_3$$

Similarly $z_3^2 = z_2$.

Hence the roots of unity can be denoted as

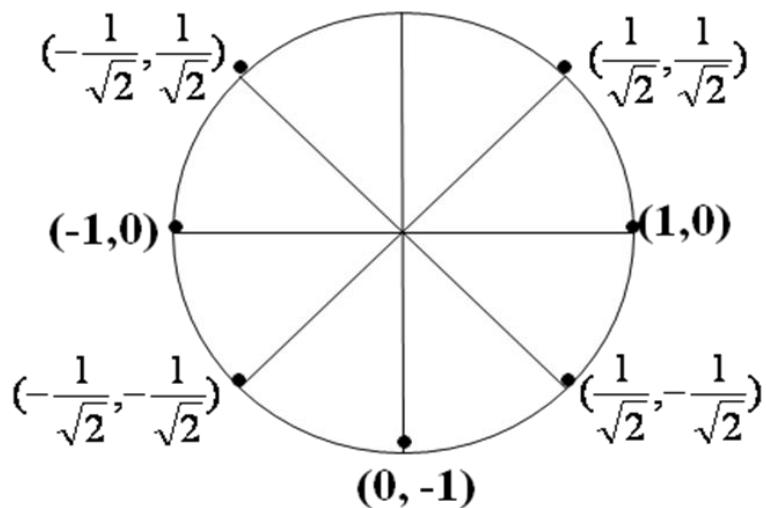
$$1, \omega, \omega^2$$

where ω is a complex root of unity.

It can also be shown that

$$1 + \omega + \omega^2 = 0.$$

- $n = 8$:

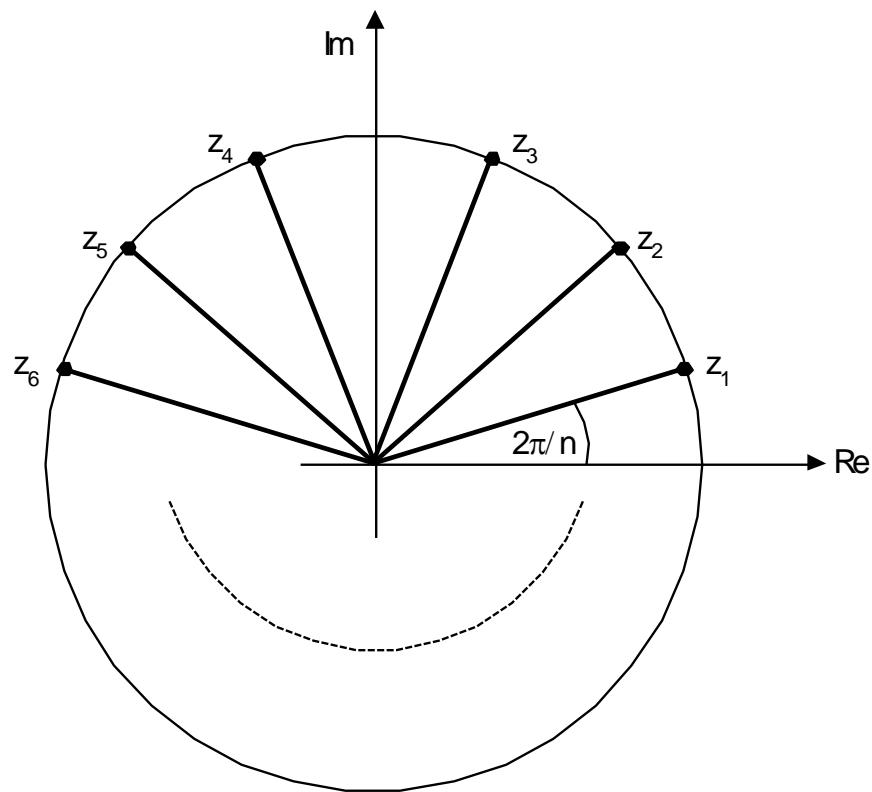
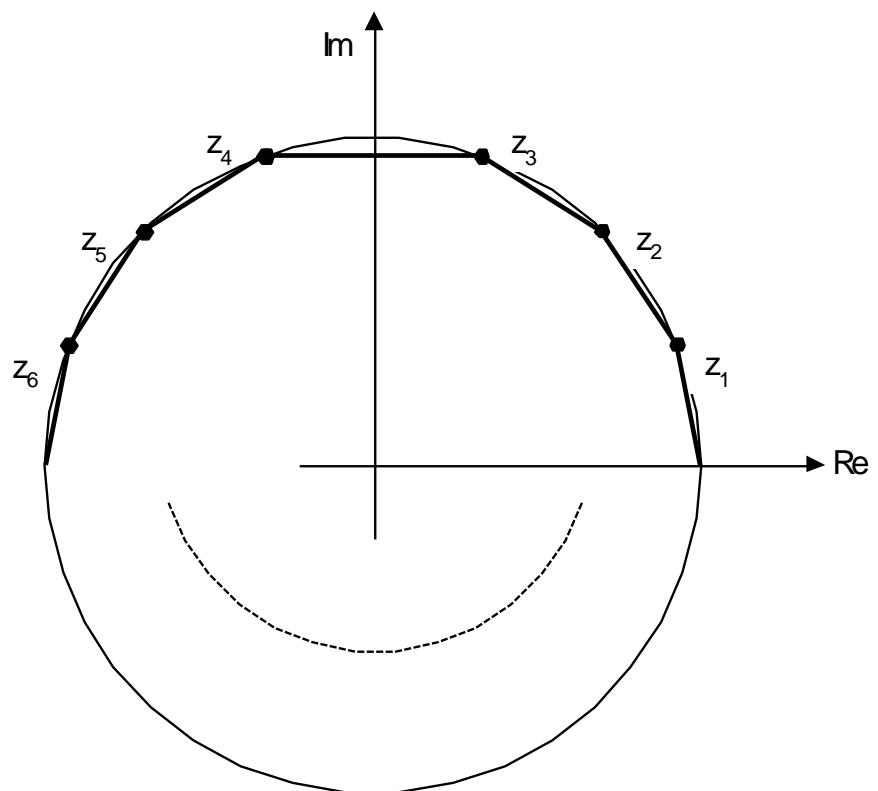


- What relationship would exist between the roots?
- Can you deduce a pattern for the relationship between the n^{th} roots of unity?

In general the n^{th} roots of unity $z = 1^{1/n}$

- will produce n equally spaced roots, separated by angles of $\frac{2\pi}{n}$,
- all roots will lie on the unit circle

- The complex numbers form vertices of an n -sided polygon



8.5 EULER'S FORMULA

- Polar form of complex numbers

Definition: Euler's Formula

Euler's formula states that

$$e^{i\theta} = \cos\theta + i\sin\theta$$

It follows that

$$e^{in\theta} = \cos n\theta + i\sin n\theta$$

From the definition, if z is any complex number with modulus r and $\text{Arg}(z) \theta$, then

$$\begin{aligned} z &= r\cos\theta + ir\sin\theta \\ &= r(\cos\theta + i\sin\theta) \\ &= re^{i\theta} \end{aligned}$$

Example 8.13

Express the following complex numbers in the form of $re^{i\theta}$.

(a) $2 + 2\sqrt{3}i$ (b) $2 - 4i$
(c) $-5i$ (d) -6

Solution

$$(a) 2 + 2\sqrt{3}i \Rightarrow r = \sqrt{(2)^2 + 2\sqrt{3}^2} = 4$$

$$\theta = \tan^{-1}\left(\frac{2\sqrt{3}}{2}\right) = \frac{\pi}{3}$$

$$\text{Thus, } 2 + 2\sqrt{3}i = 4e^{\frac{\pi}{3}i}$$

(b) *Complete the solution...*

Example 8.14

Find complex number expressions, in Cartesian form, for

$$(a) e^{\frac{\pi}{4}i} = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i.$$

$$(b) e^{-i}$$

$$(c) e^{i\pi}$$

Conjugation, Multiplication, Division in Polar Form

- If $z = re^{i\theta}$, then $\bar{z} = r\overline{e^{i\theta}} = re^{\overline{i\theta}} = re^{-i\theta}$
- So conjugation corresponds to $\theta \rightarrow -\theta$
- For two numbers in polar form, $z = re^{i\theta}$ and $w = \rho e^{i\phi}$, we have

$$zw = r\rho e^{i(\theta+\phi)}$$

and

$$\frac{z}{w} = \frac{r}{\rho} e^{i(\theta-\phi)}$$

- So to multiply/divide: multiply/divide moduli, and add/subtract angles

8.5.1 Euler's Formula and the n th Power of a Complex Number

We know that a complex number can be express as $z = re^{i\theta}$, then

$$z^2 = r^2 e^{i2\theta}$$

$$z^3 = r^3 e^{i3\theta}$$

$$z^4 = r^4 e^{i4\theta}$$

⋮

$$z^n = r^n e^{in\theta}$$

Example 8.15

Express the complex number $z = -1 + \sqrt{3}i$ in the form of $re^{i\theta}$. Then find

(a) z^2 (b) z^3 (c) z^7

8.5.2 Euler's Formula and the n th Roots of a Complex Number

The n -th roots of a complex number can be found using the Euler's formula. Note that if $z^n = re^{i\theta}$, then,

$$z = [re^{i\theta}]^{\frac{1}{n}} = r^{\frac{1}{n}} e^{i \frac{\theta + 2k\pi}{n}}$$

for $k = 0, 1, 2, \dots, n-1$

Substituting $k = 0, 1, 2, \dots, n-1$ yields the n th roots of the given complex number.

Example 8.16

Solve $z^2 = 1 + i$.

Example 8.17

Find all the roots of $z^3 = 3 + 4i$.

Ans.: cube roots of $3+4i \approx 1.63+0.52i$,
 $-1.26+1.15i$, $-0.36-1.67i$

Example 8.18

Find all the roots of $z^3 = \sqrt{3} - i$.

Example 8.19

(a) Solve the equation $z + 2i^3 = 216i$

(b) Prove that $\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$,
hence find the roots of the equation
 $16p^4 - 16p^2 + 3 = 0$.

Ans.: (b) $p_1 = \cos 30^\circ = 0.866$ $p_2 = \cos 60^\circ = 0.5$

$p_3 = \cos 120^\circ = -0.5$ $p_4 = \cos 150^\circ = -0.866$

Cos and sin as complex exponentials

Definition

$$\cos \theta = \frac{1}{2} e^{i\theta} + e^{-i\theta}$$

$$\sin \theta = \frac{1}{2} e^{i\theta} - e^{-i\theta}$$

- For real θ , these give the real and imaginary part of $e^{i\theta}$ respectively
- For complex θ , they provide the “natural” extensions of cos and sin to the whole complex plane

Application to higher-degree equations

Certain higher-degree equations can be brought into quadratic form and solved this way. For example, the 6th-degree equation in x :

$$x^6 - 4x^3 + 8 = 0$$

can be rewritten as:

$$(x^3)^2 - 4(x^3) + 8 = 0$$

or, equivalently, as a quadratic equation in a new variable u :

$$u^2 - 4u + 8 = 0$$

where $u = x^3$.

Solving the quadratic equation for u results in the two solutions:

$$u = 2 \pm 2i$$

Thus $x^3 = 2 \pm 2i$

Finding the three cube roots of $2 + 2i$ – the other three solutions for x will be their complex conjugates

Rewriting the right-hand side using Euler's formula:

$$x^3 = 2^{\frac{3}{2}} e^{\frac{1}{4}\pi i} = 2^{\frac{3}{2}} e^{\frac{8k+1}{4}\pi i}$$

(since $e^{2k\pi i} = 1$), gives the three solutions:

$$x = 2^{\frac{1}{2}} e^{\frac{8k+1}{12}\pi i}, \quad k = 0, 1, 2$$

Using Eulers' formula again together with trigonometric identities such as $\cos(\pi/12) = (\sqrt{2} + \sqrt{6}) / 4$, and adding the complex conjugates, gives the complete collection of solutions as:

$$x_{1,2} = -1 \pm i$$

$$x_{3,4} = \frac{1 + \sqrt{3}}{2} \pm \frac{1 - \sqrt{3}}{2} i$$

and

$$x_{5,6} = \frac{1 - \sqrt{3}}{2} \pm \frac{1 + \sqrt{3}}{2} i$$

Example 8.20

Find the fifth-roots of $\sqrt{3} + i$ expressed in trigonometric form.

Ans.: The five fifth-roots are

$$z_1 = 2^{1/5} \cos 6^\circ + i \sin 6^\circ$$

$$z_2 = 2^{1/5} \cos 78^\circ + i \sin 78^\circ$$

$$z_3 = 2^{1/5} \cos 150^\circ + i \sin 150^\circ$$

$$z_4 = 2^{1/5} \cos 222^\circ + i \sin 222^\circ$$

$$z_5 = 2^{1/5} \cos 294^\circ + i \sin 294^\circ$$