

Chapter 6: Vectors

6.1 Vectors in 3-dimensional space

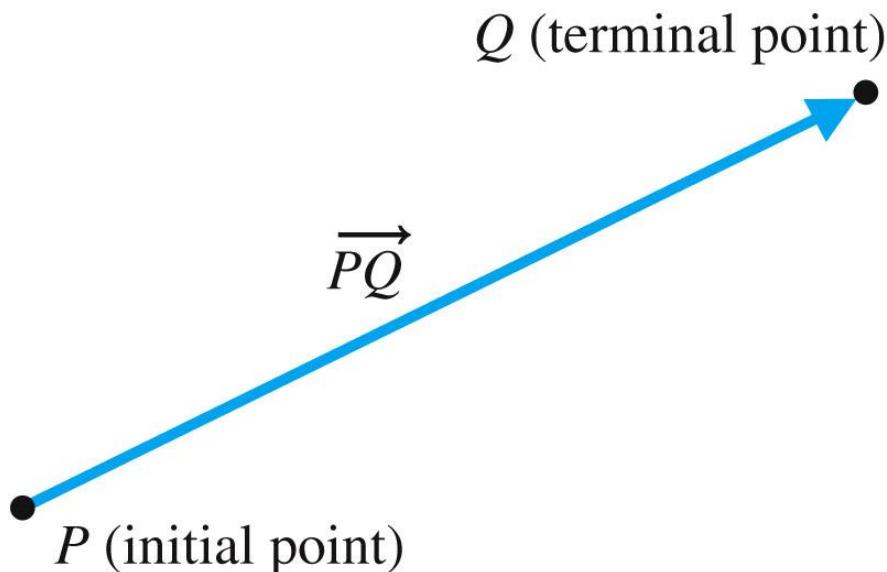
6.2 Scalar Products

6.3 Vector products

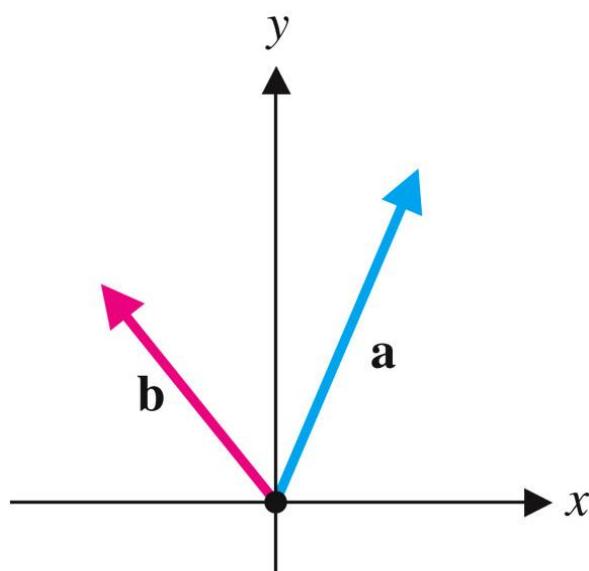
6.4 Lines and Planes in space

6.1 Vector in 3-Dimensional Space

A **vector** is a quantity that has both **magnitude** and **direction**.

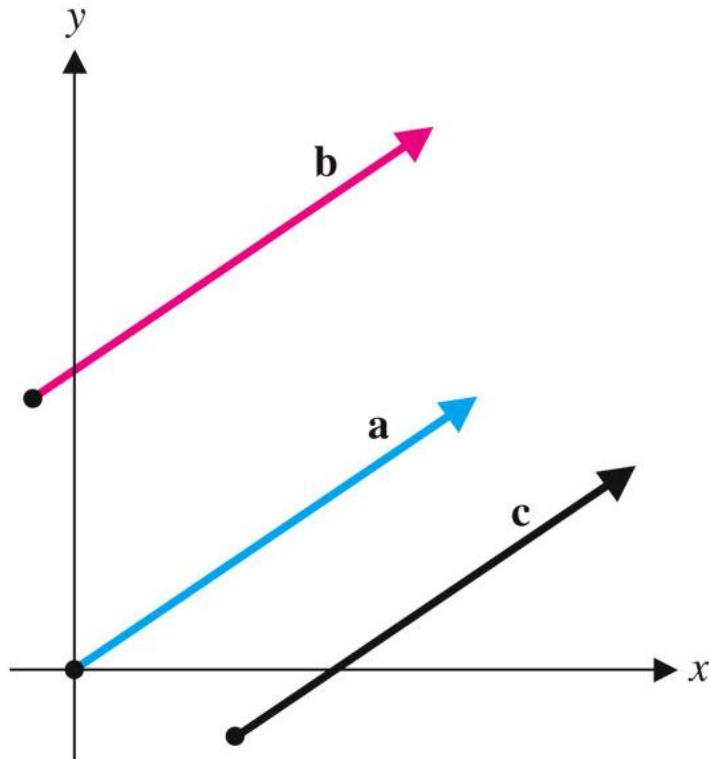


Any point in 2-dimensional plane or 3-dimensional space can represent a **position vector**.

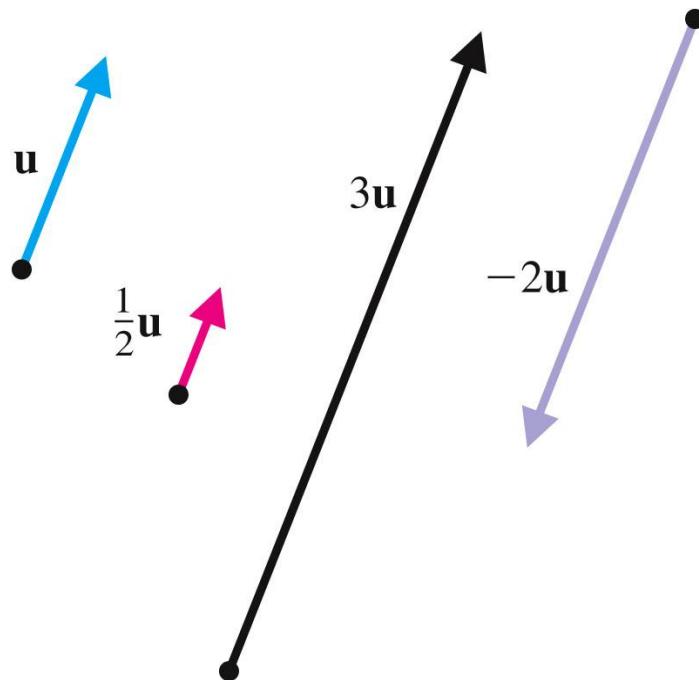


A vector can be written as \overrightarrow{PQ} , or \mathbf{a} , or $\hat{\mathbf{a}}$.

Two vectors are equal if both vectors have the **same magnitude** and **direction**.

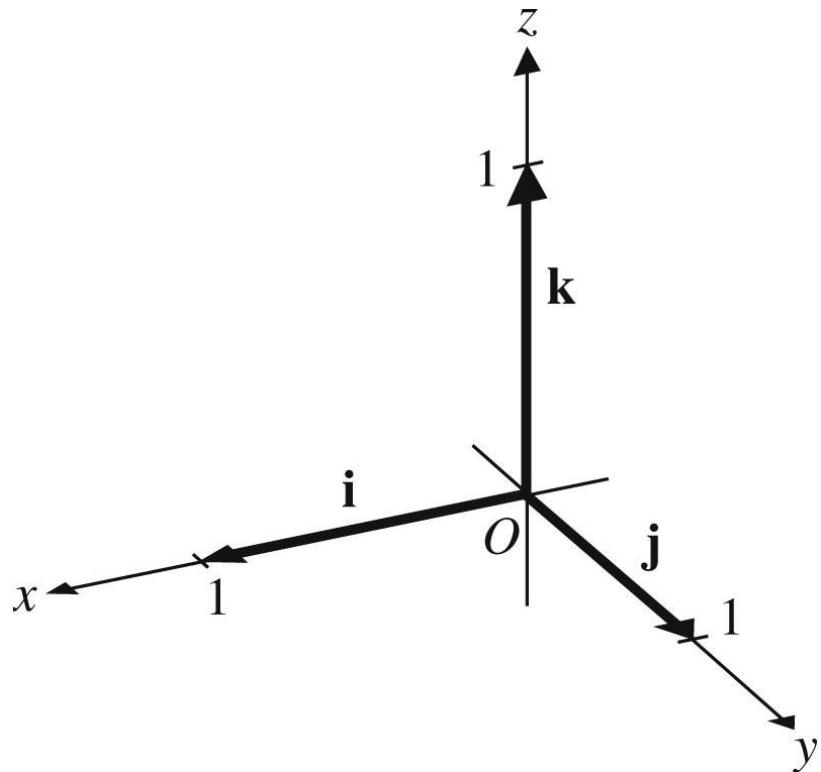


If $\mathbf{v} = k\mathbf{w}$ with k as a constant, then \mathbf{v} and \mathbf{w} are parallel vectors.



Any vector that has a magnitude of one unit is called a **unit vector**.

Three **standard unit vectors** are: **i**, **j** and **k**.



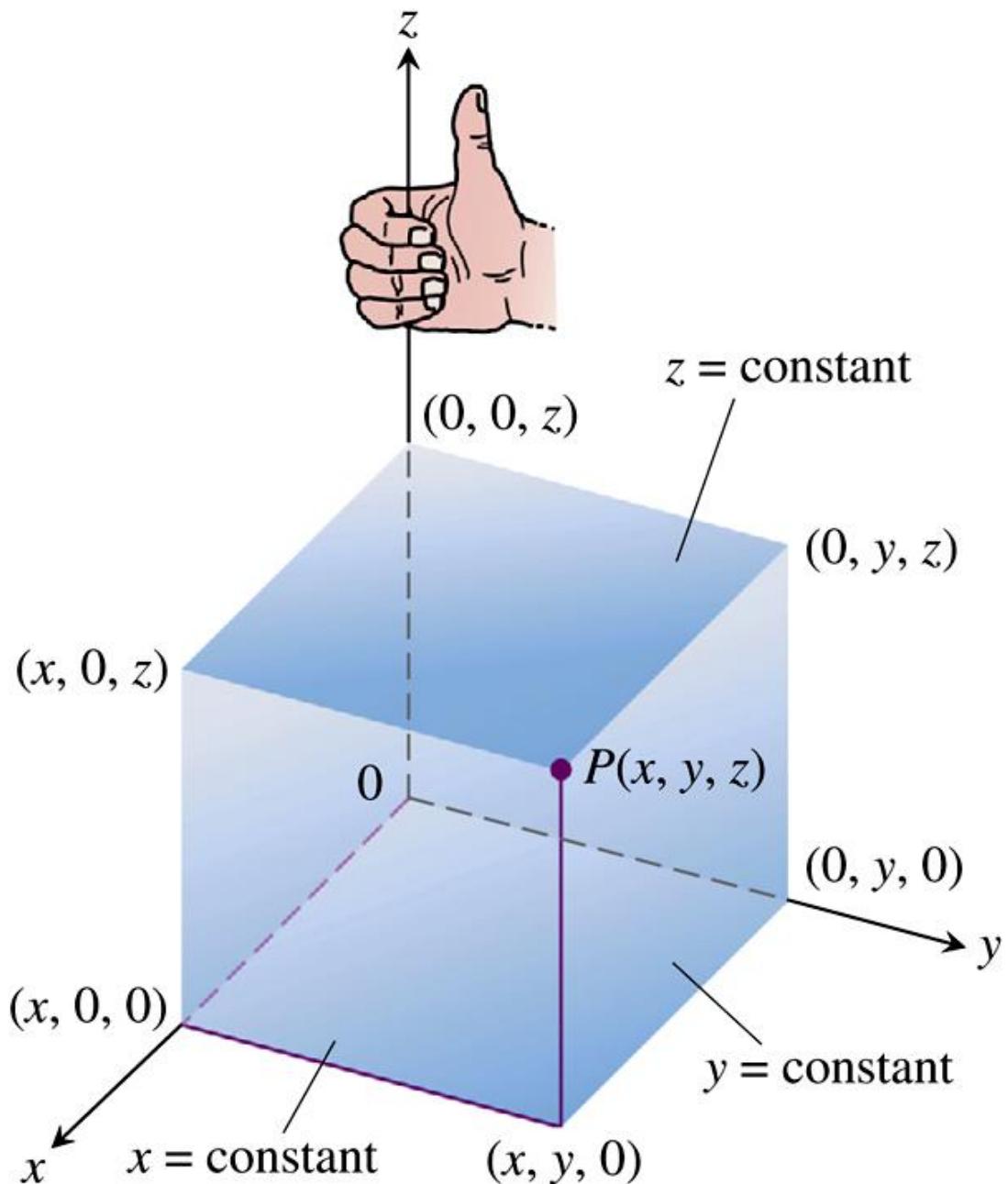
Vectors **i**, **j** and **k** can be written in components form:

$$\mathbf{i} = \langle 1, 0, 0 \rangle, \mathbf{j} = \langle 0, 1, 0 \rangle \text{ and } \mathbf{k} = \langle 0, 0, 1 \rangle$$

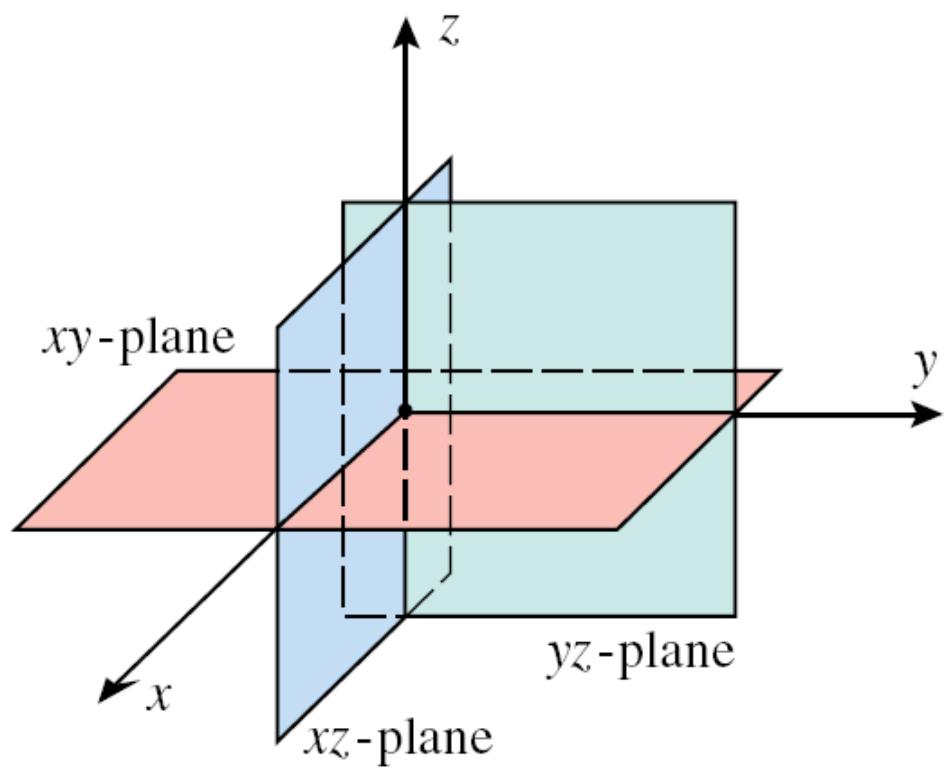
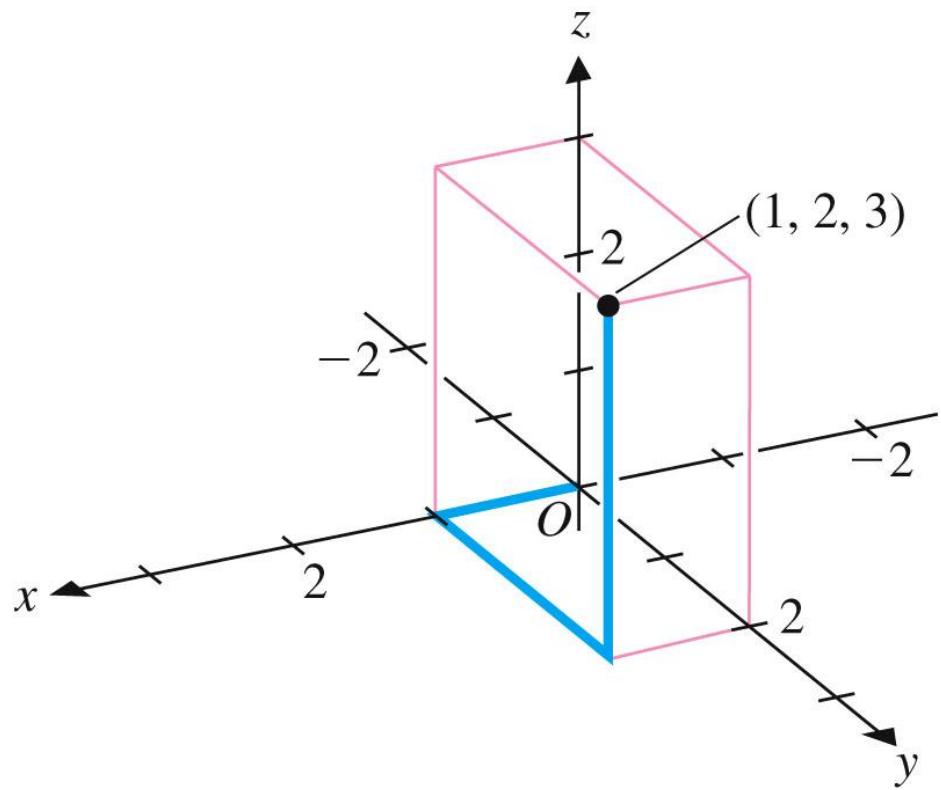
Any vector can be written as a linear combination of the vectors **i**, **j** and **k**

3-D Coordinate System

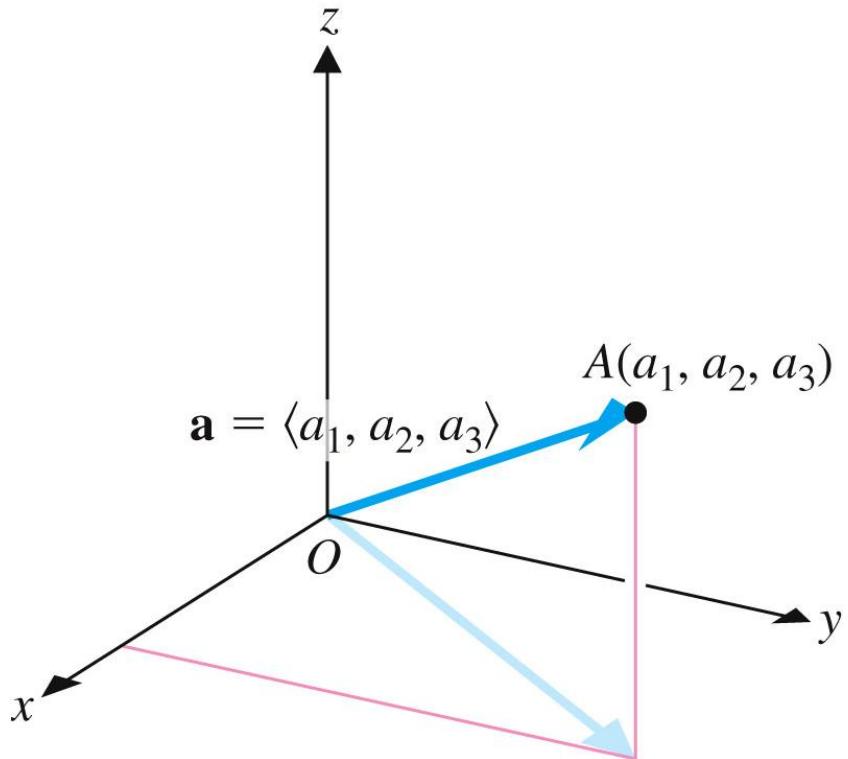
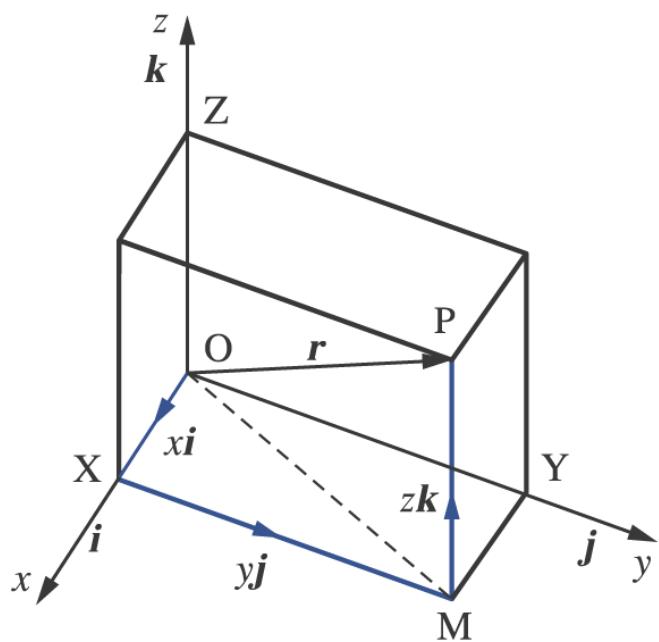
The Cartesian coordinate system is right-handed.



The coordinate planes divide space into 8 octants:



The **position vector** \overrightarrow{OP} of a point x, y, z in space is the vector from the origin to the point. It can be expressed in the form $\overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \langle x, y, z \rangle$.

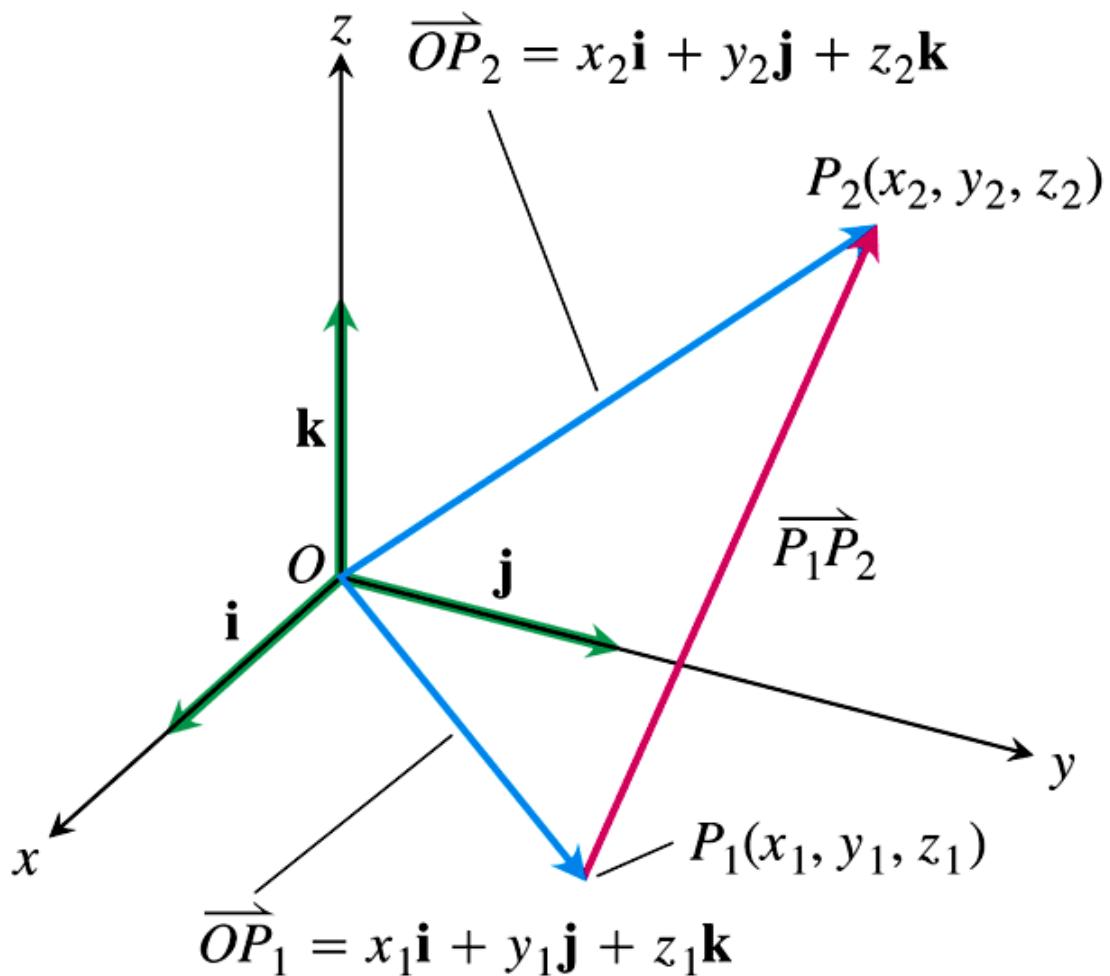


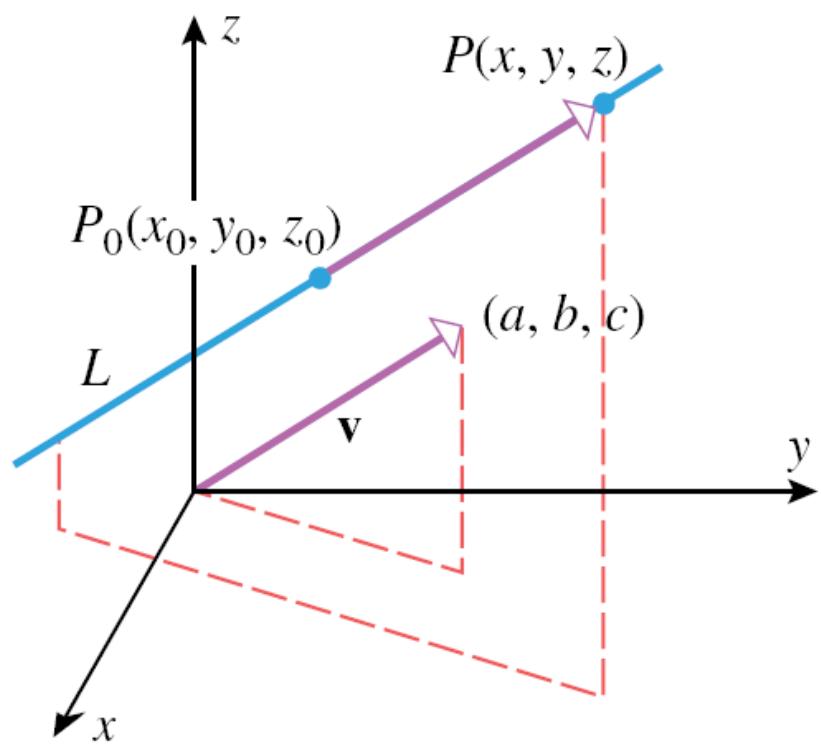
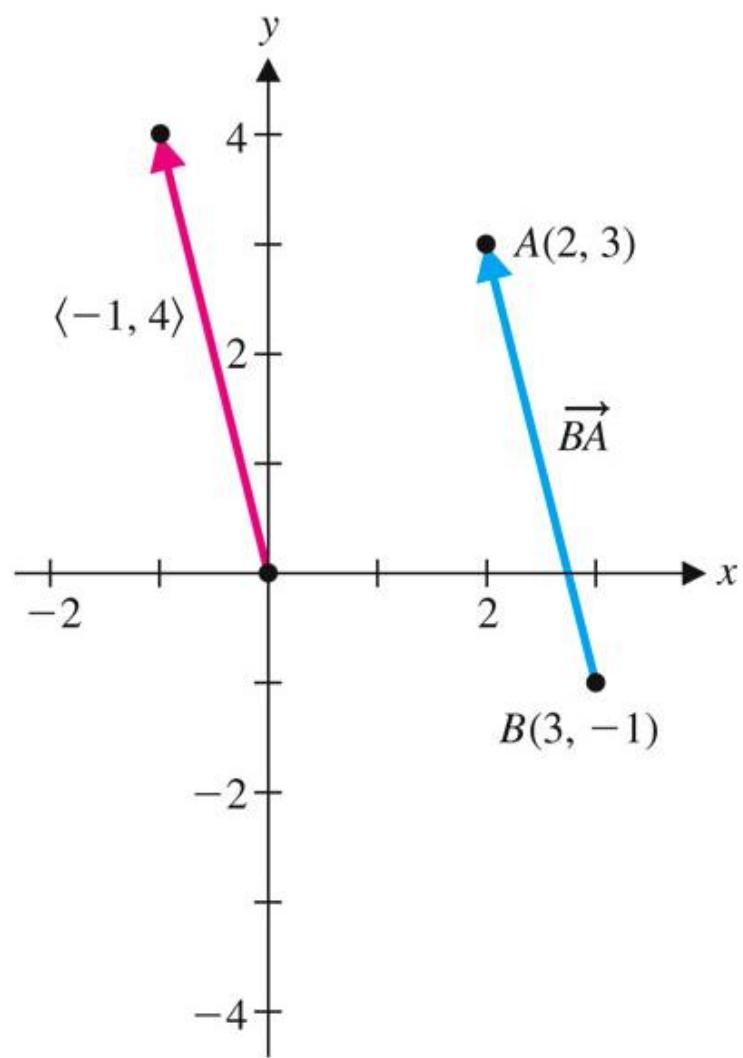
The displacement vector $\overrightarrow{P_1P_2}$ from the point $P_1 = x_1, y_1, z_1$ to the point $P_2 = x_2, y_2, z_2$ can be computed from the coordinates of the points by the formula

$$\overrightarrow{P_1P_2} = x_2 - x_1 \mathbf{i} + y_2 - y_1 \mathbf{j} + z_2 - z_1 \mathbf{k}$$

or

$$\overrightarrow{P_1P_2} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$





Properties of vectors in space

Let $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ be vectors in 3-dimensional space, and k is a constant.

1. $\mathbf{v} = \mathbf{w}$ if and only if

$$v_1 = w_1, v_2 = w_2, v_3 = w_3.$$

2. The magnitude of \mathbf{v} is $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$.

3. The unit vector in the direction of \mathbf{v} is

$$\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle v_1, v_2, v_3 \rangle}{|\mathbf{v}|}.$$

4. $\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle$

5. $k\mathbf{v} = \langle kv_1, kv_2, kv_3 \rangle$

6. Zero vector is denoted as $\mathbf{0} = \langle 0, 0, 0 \rangle$.

Example: Express the vector \overrightarrow{PQ} if it starts at point $P = (6,5,8)$ and stops at point $Q = (7,3,9)$ in components form.

Example: Given that $\mathbf{a} = \langle 3,1,-2 \rangle$, $\mathbf{b} = \langle -1,6,4 \rangle$.

Find

- (a) $\mathbf{a} + 3\mathbf{b}$
- (b) $|\mathbf{b}|$
- (c) a unit vector which is in the direction of \mathbf{b} .

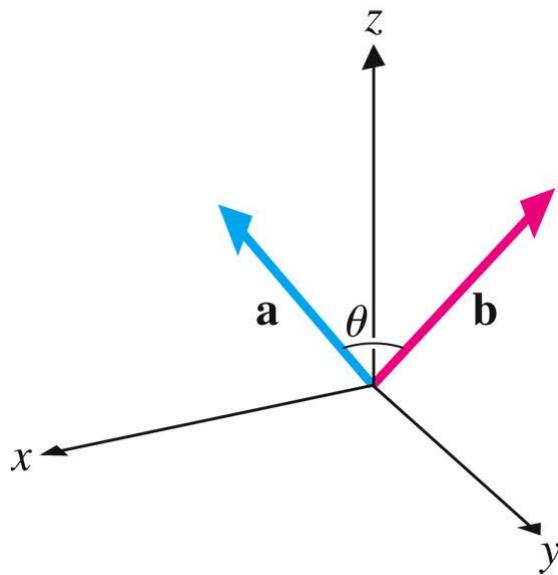
6.2 The Scalar Product (The dot product)

The **scalar product** between two vectors

$\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ is

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta$$

where θ is the angle between \mathbf{v} and \mathbf{w} .



Example:

If $\mathbf{v} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{w} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and the angle between \mathbf{v} and \mathbf{w} is 60° , find $\mathbf{v} \cdot \mathbf{w}$.

Theorem 6.1:

If $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$, then the scalar product $\mathbf{v} \cdot \mathbf{w}$ is

$$\begin{aligned}\mathbf{v} \cdot \mathbf{w} &= \langle v_1, v_2, v_3 \rangle \cdot \langle w_1, w_2, w_3 \rangle \\ &= v_1 w_1 + v_2 w_2 + v_3 w_3\end{aligned}$$

Example:

Given that $\mathbf{u} = \langle 2, -2, 3 \rangle$, $\mathbf{v} = \langle 5, 8, 1 \rangle$ and $\mathbf{w} = \langle -4, 3, -2 \rangle$, find

- (a) $\mathbf{u} \cdot \mathbf{v}$
- (b) $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$
- (c) $\mathbf{u} \cdot \mathbf{v} + \mathbf{w}$
- (d) the angle between \mathbf{u} and \mathbf{v}
- (e) the angle between \mathbf{v} and \mathbf{w} .

Example:

Let $A = (4, 1, 2)$, $B = (3, 4, 5)$ and $C = (5, 3, 1)$ are the vertices of a triangle. Find the angle at vertex A .

Theorem 6.2:

The nature of an angle θ , between two vectors \mathbf{u} and \mathbf{v} .

1. θ is an acute angle if and only if $\mathbf{u} \cdot \mathbf{v} > 0$
2. θ is an obtuse angle if and only if $\mathbf{u} \cdot \mathbf{v} < 0$.
3. $\theta = 90^\circ$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example: Show that the given vectors are perpendicular to each other.

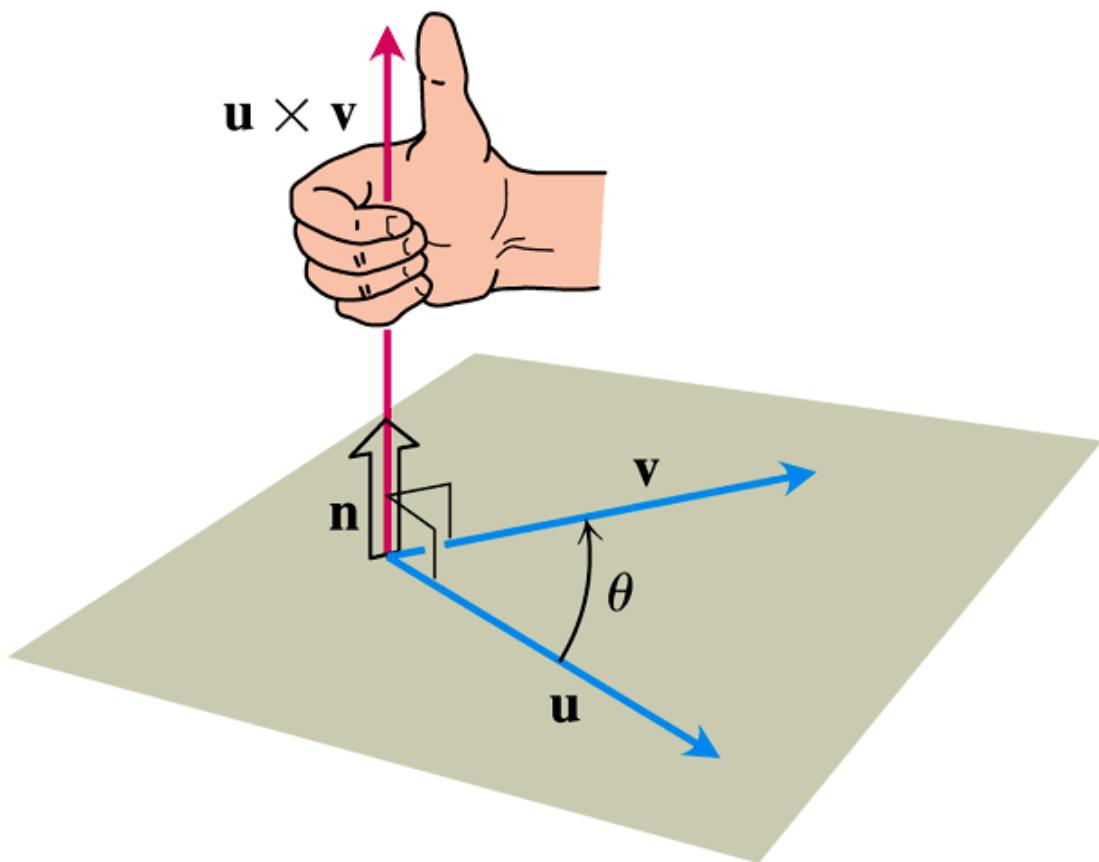
- (a) \mathbf{i} and \mathbf{j}
- (b) $3\mathbf{i}-7\mathbf{j}+2\mathbf{k}$ and $\mathbf{i}+4\mathbf{j}-\mathbf{k}$

Properties of scalar product

1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
3. $k\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot k\mathbf{v}$
4. $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$
5. $\mathbf{u} \cdot \mathbf{0} = \mathbf{0} \cdot \mathbf{u} = 0$

6.3 Vector Products (Cross Products)

The cross product (vector product) $\mathbf{u} \times \mathbf{v}$ is a vector perpendicular to \mathbf{u} and \mathbf{v} whose direction is determined by the right hand rule and whose length is determined by the lengths of \mathbf{u} and \mathbf{v} and the angle between them.

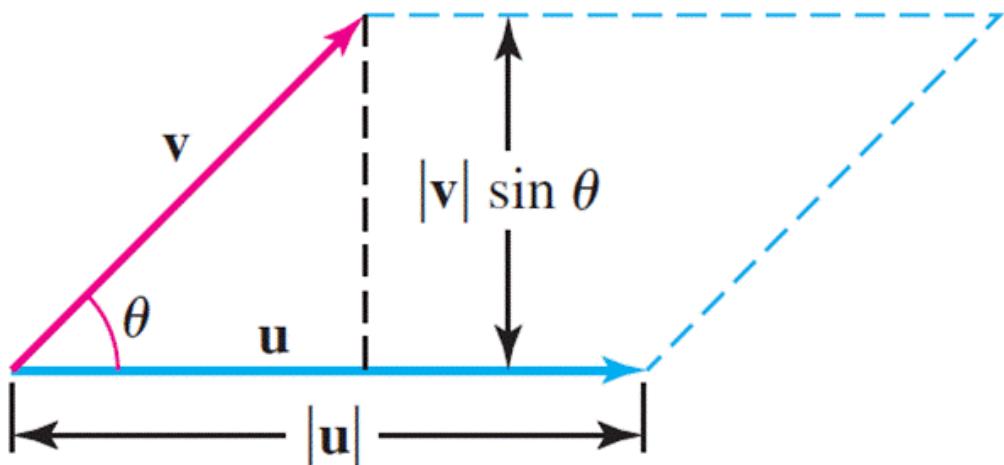


Definition:

If \mathbf{u} and \mathbf{v} are nonzero vectors, and θ ($0 < \theta < \pi$) is the angle between \mathbf{u} and \mathbf{v} , then

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.$$

The length of the cross product as an area



$$\begin{aligned}\text{Area} &= \text{base} \times \text{height} \\ &= |\mathbf{u}| |\mathbf{v}| \sin \theta \\ &= |\mathbf{u} \times \mathbf{v}|\end{aligned}$$

Theorem 6.3

If \mathbf{u} and \mathbf{v} are two sides of a parallelogram, then the area of the parallelogram is

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.$$

The cross product obeys the laws

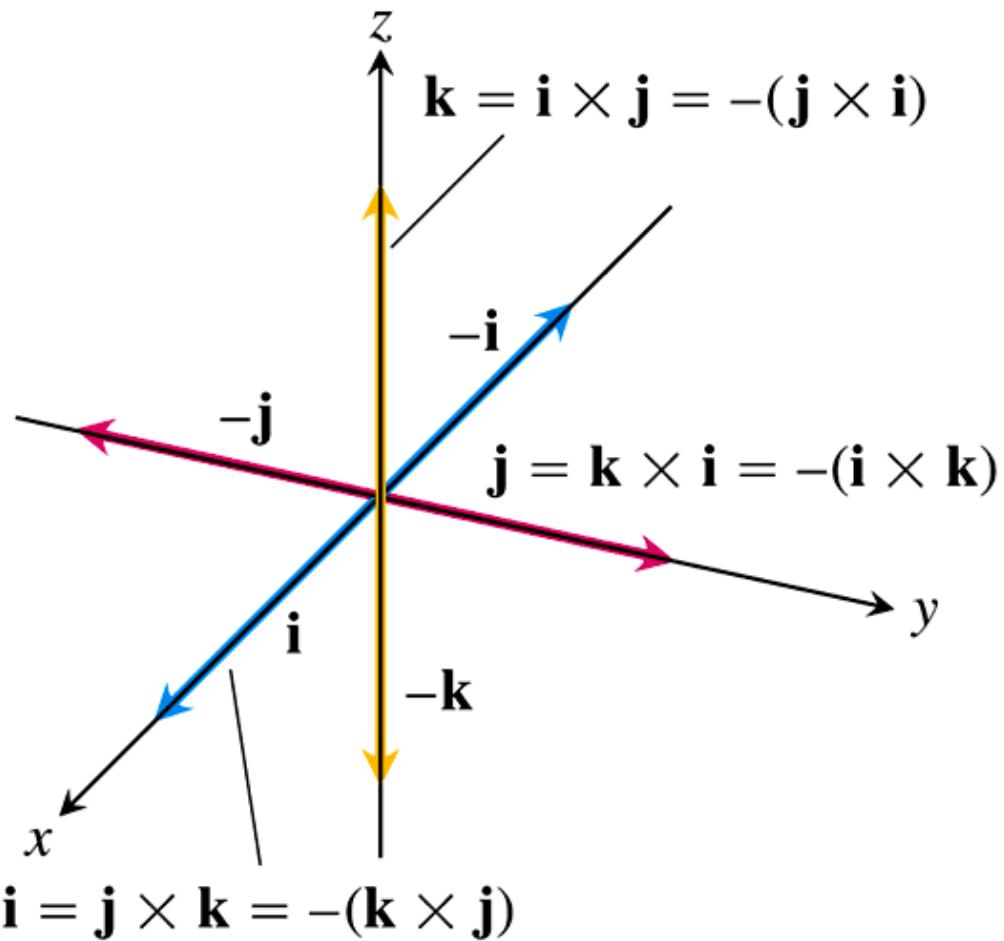
- (a) $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$
- (b) $k\mathbf{u} \times \mathbf{v} = \mathbf{u} \times k\mathbf{v} = k\mathbf{u} \times \mathbf{v}$
- (c) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
- (d) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- (e) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$

Theorem 6.4

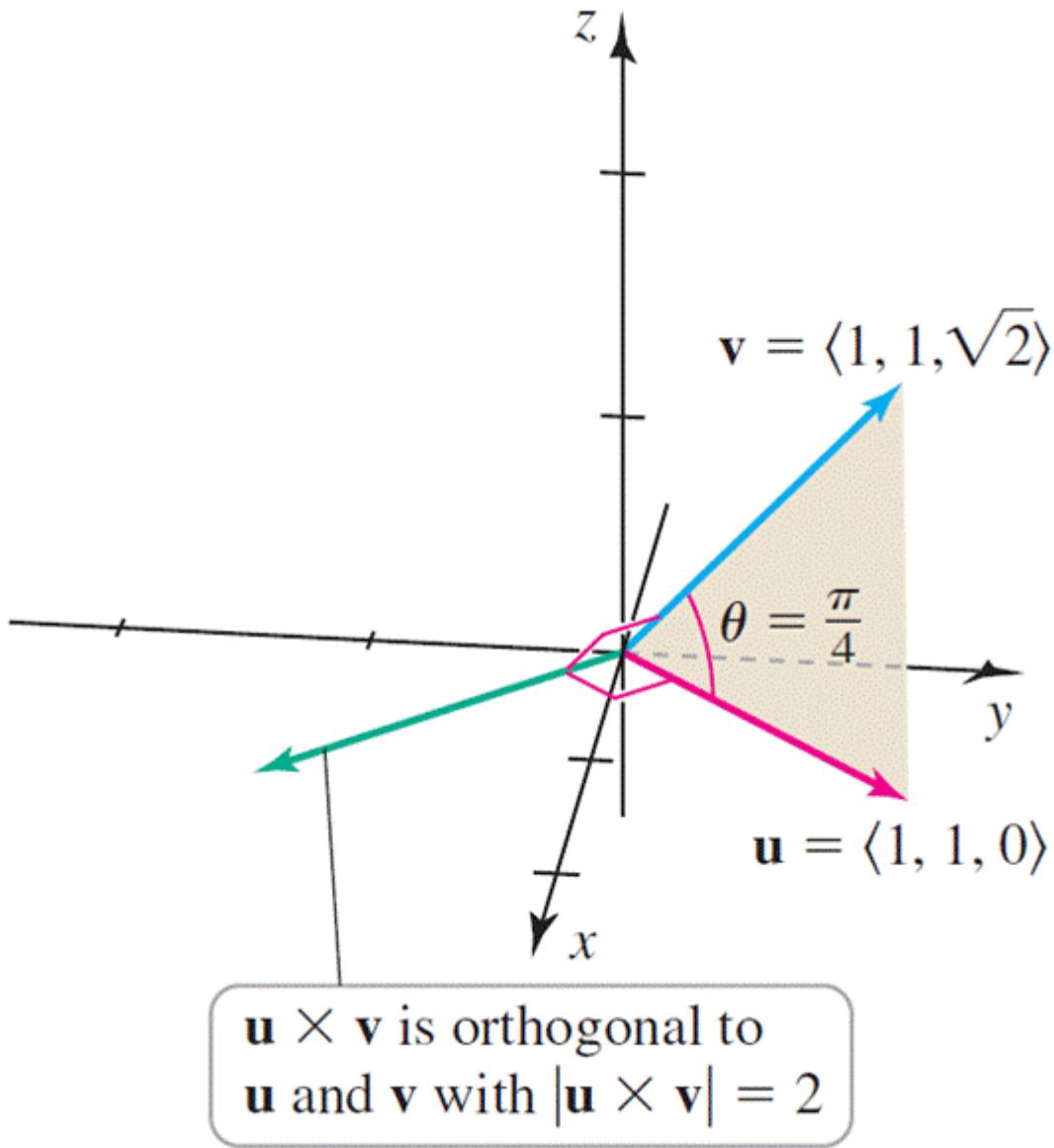
If $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k}$ and $\mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$, then

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

The pairwise cross products of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:



Example:



Example:

Given that $\mathbf{u} = \langle 3, 0, 4 \rangle$ and $\mathbf{v} = \langle 1, 5, -2 \rangle$, find

(a) $\mathbf{u} \times \mathbf{v}$ (b) $\mathbf{v} \times \mathbf{u}$

Example:

Find two unit vectors that are perpendicular to the vectors $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ and $\mathbf{v} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

Example:

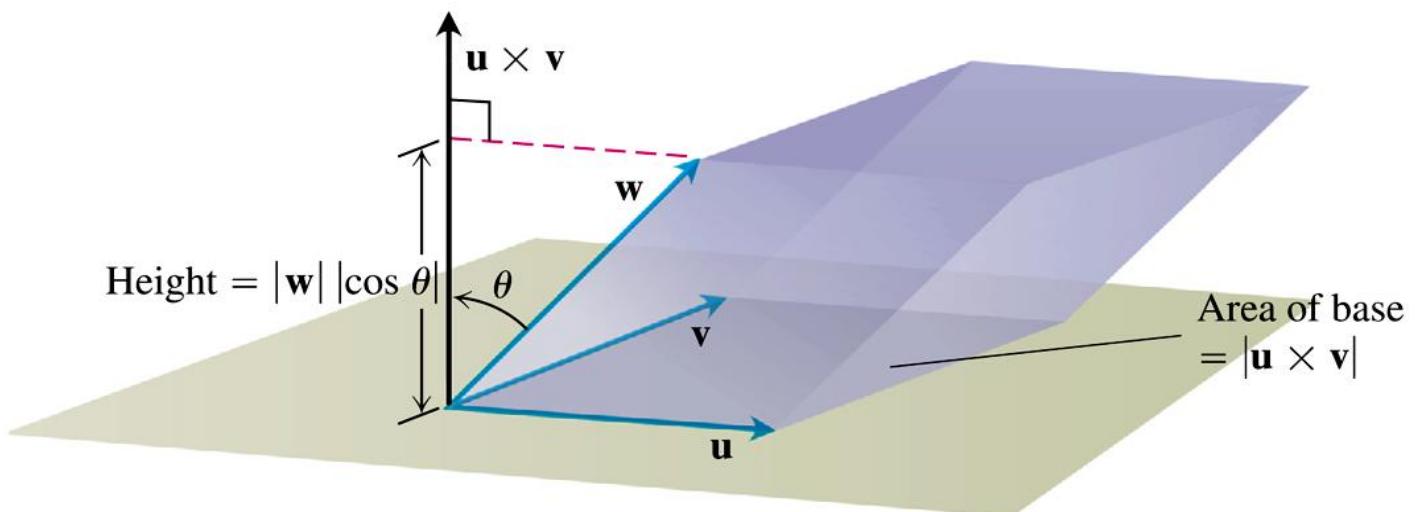
(a) Find an area of a parallelogram that is formed from vectors $\mathbf{u} = \mathbf{i} + \mathbf{j} - 3\mathbf{k}$ and $\mathbf{v} = -6\mathbf{j} + 5\mathbf{k}$.

(b) Find an area of a triangle that is formed from vectors $\mathbf{u} = \mathbf{i} + \mathbf{j} - 3\mathbf{k}$ and $\mathbf{v} = -6\mathbf{j} + 5\mathbf{k}$.

Triple Scalar Product

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

The number $|\mathbf{u} \times \mathbf{v} \cdot \mathbf{w}|$ is the volume of a parallelepiped.



$$\begin{aligned} \text{Volume} &= \text{area of base} \cdot \text{height} \\ &= |\mathbf{u} \times \mathbf{v}| |\mathbf{w}| |\cos \theta| \\ &= |(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| \end{aligned}$$

Example

Find the volume of the parallelepiped determined by the vectors \mathbf{a} ; \mathbf{b} ; and \mathbf{c} .

$$\mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k}, \mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}, \mathbf{c} = -\mathbf{i} + \mathbf{j} + \mathbf{k}$$

Solution

$$\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = -4$$

So, the volume is 4.