CHAPTER 8

POLAR COORDINATES

- 8.1 Polar coordinates system
- 8.2 Relationship between Cartesian and Polar Coordinates
- 8.3 Forming polar equations from Cartesian equations and vice-versa
- 8.4 Sketching polar equations
 - Method 1: Table
 - Method 2: Test of symmetries

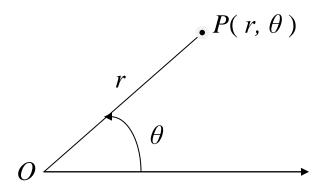
8.1 Polar Coordinates System

Definition:

The polar coordinates of point P is written as an ordered pair (r,θ) , that is $P(r,\theta)$ where

r - distance from origin to P

 θ - angle from polar axis to the line OP



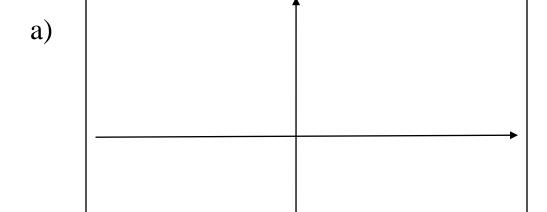
Note:

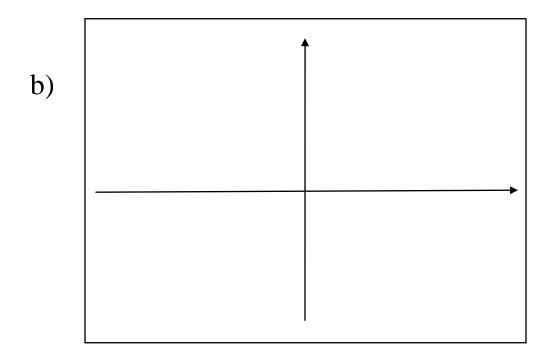
- (i) θ is positive in anticlockwise direction, and it is negative in clockwise direction.
- (ii) Polar coordinate of a point is not unique.
- (iii) A point $(-r,\theta)$ is in the opposite direction of point (r,θ) .

Example: Plot the following set of points in the same diagram:

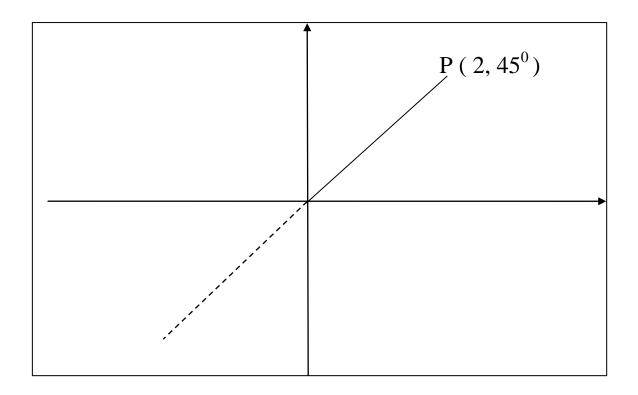
(a)
$$(3,225^{\circ})$$
, $(1,225^{\circ})$, $(-3,225^{\circ})$

(a)
$$(3,225^{\circ})$$
, $(1,225^{\circ})$, $(-3,225^{\circ})$
(b) $(2,\frac{\pi}{3})$, $(2,-\frac{\pi}{3})$, $(-2,\frac{\pi}{3})$





For every point $P(r,\theta)$ in $0 \le \theta \le 2\pi$, there exist 3 more coordinates that represent the point P.

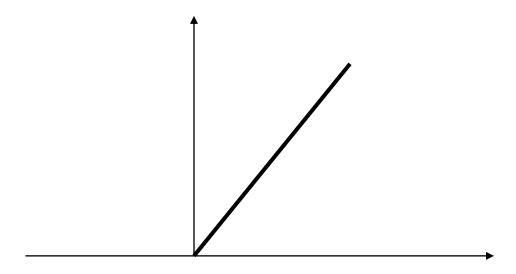


Example:

Find all possible polar coordinates of the points whose polar coordinates are given as the following:

(a)
$$P(1,45^{\circ})$$
 (b) $Q(2,-60^{\circ})$ (c) $R(-1,225^{\circ})$

8.2 Relationship between Cartesian and Polar Coordinates



1) Polar Cartesian

$$x = r\cos\theta$$
 $y = r\sin\theta$

2) Cartesian Polar

$$r = \sqrt{x^2 + y^2} \qquad \tan \theta = \frac{y}{x}$$

Example: Find the Cartesian coordinates of the points whose polar coordinates are given as

(a)
$$\left(1, \frac{7\pi}{4}\right)$$
 (b) $\left(-4, \frac{2\pi}{3}\right)$ (c) $\left(2, -30^{\circ}\right)$

Example: Find all polar coordinates of the points whose rectangular coordinates are given as

(a)
$$(11,5)$$

(b)
$$(0,2)$$

(a)
$$(11,5)$$
 (b) $(0,2)$ (c) $(-4,-4)$

8.3 Forming polar equations from Cartesian equations and vice-versa.

To change the equation in Cartesian coordinates to polar coordinates, and conversely, use equation

$$x = r\cos\theta$$
 $y = r\sin\theta$ $r = \sqrt{x^2 + y^2}$

Example: Express the following rectangular equations in polar equations.

(a)
$$y = x^2$$
 (b) $x^2 + y^2 = 16$ (c) $xy = 1$

Example: Express the following polar equations in rectangular equations.

(a)
$$r = 2\sin\theta$$

(b)
$$r = \frac{3}{4\cos\theta + 5\sin\theta}$$

(c)
$$r = 4\cos\theta + 4\sin\theta$$
 (d) $r = \tan\theta\sec\theta$

(d)
$$r = \tan \theta \sec \theta$$

8.4 Graph Sketching of Polar Equations

There are two methods to sketch a graph of $r = f(\theta)$:

- (1) Form a table for r and θ . $(0 \le \theta \le 2\pi)$. From the table, plot the (r, θ) points.
- (2) Symmetry test of the polar equation.

The polar equations is symmetrical

- (a) about the *x*-axis if $f(-\theta) = f(\theta)$
 - consider θ in range [0, 180°] only
- (b) about the y-axis if $f(\pi \theta) = f(\theta)$
 - consider θ in range [0, 90°] and [270°, 360°]
- (c) at the origin if $f(\pi + \theta) = f(\theta)$
 - consider θ in range [0, 180°] or [180°, 360°]

^{*} if symmetry at all, consider θ in range [0, 90°] **only.**

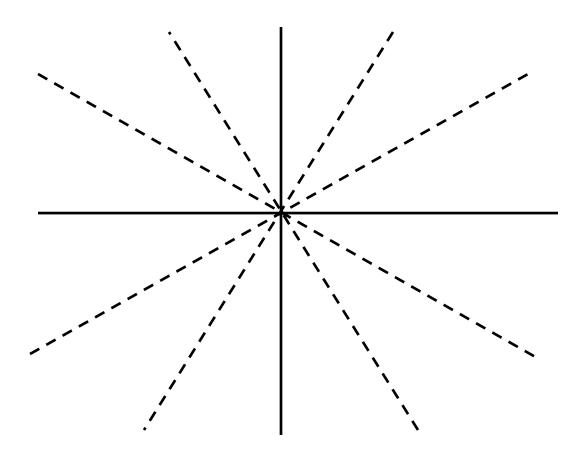
Example 1: Sketch the graph of $r = 2 \sin \theta$

Solution: (Method 1)

Here is the complete table

θ	0	30	60	90	120	150	180	210
$r = 2\sin\theta$	0	1.0	1.732	2	1.732	1	0	-1.0

θ	240	270	300	330	360
$r = 2\sin\theta$	-1.732	-2	-1.732	-1	0

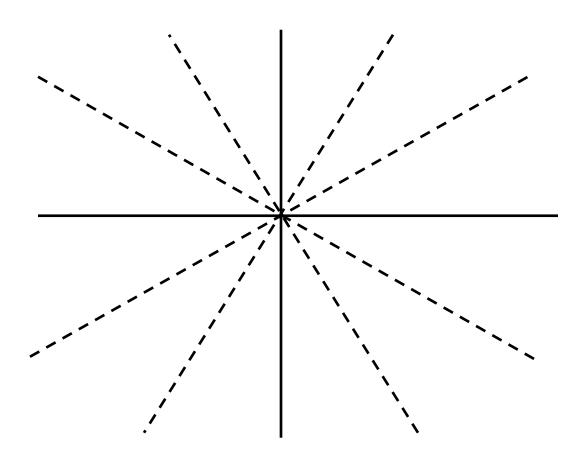


Method 2 Symmetrical test for $f(\theta) = 2\sin\theta$

Symmetry	Symmetrical test
About x-axis	$f(-\theta) = f(\theta) ?$
About y-axis	$f(\pi - \theta) = f(\theta) ?$
About origin	$f(\pi + \theta) = f(\theta) ?$

Since r symmetry at y-axis, consider θ in range $[0, 90^0]$ and $[270^0, 360^0]$

θ	0	30	60	90	270	300	330	360
$r = 2\sin\theta$	0	1.0	1.732	2	-2	-1.732	-1	0

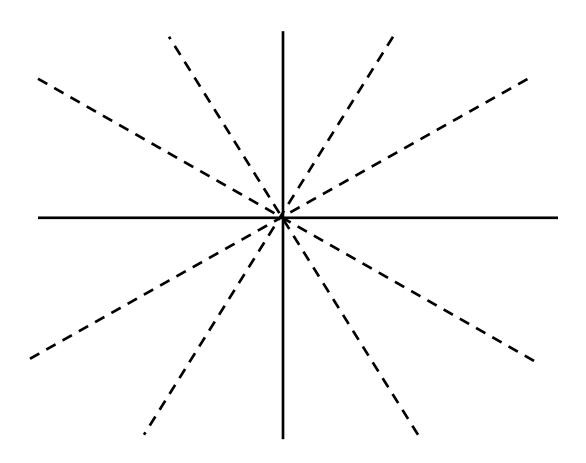


Example 2: Sketch the graph of $r = \frac{3}{2} - \cos \theta$

Symmetry	Symmetrical test
About x-axis	$f(-\theta) = f(\theta) ?$
About y-axis	$f(\pi - \theta) = f(\theta) ?$
About origin	$f(\pi + \theta) = f(\theta) ?$

Since r symmetry at x-axis, consider θ in range $[0, 180^0]$ only.

θ	0	30	60	90	120	150	180
$r = \frac{3}{2} - \cos \theta$							



Example 3: Sketch the graph of $r = 2\sin^2 \theta$

Symmetry	Symmetrical test
About x-axis	$f(-\theta) = f(\theta) ?$
About y-axis	$f(\pi - \theta) = f(\theta) ?$
About origin	$f(\pi + \theta) = f(\theta) ?$

Since r symmetry at ______, consider θ in range _____ only.

θ				
$r = 2\sin^2\theta$				

