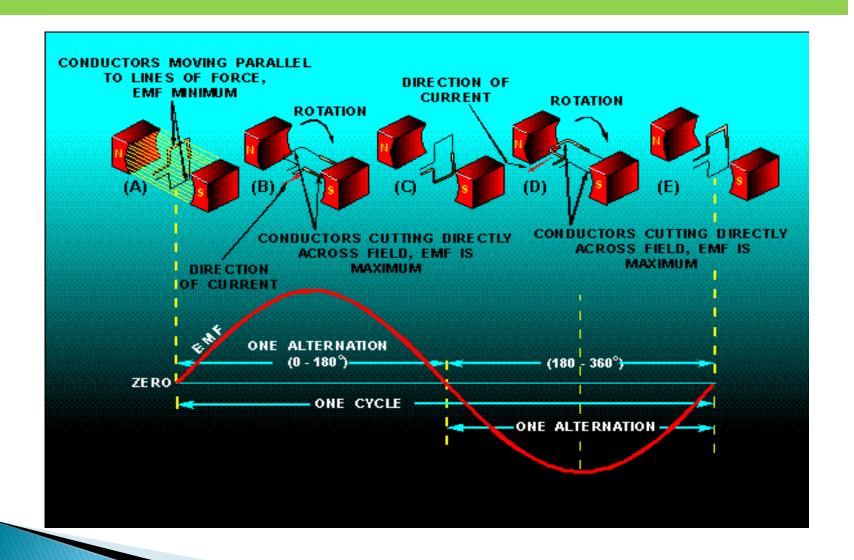
AC CIRCUITS

Sinusoids and phasors

SINUSOIDS

- A sinusoid is a signal that has the form of the sine or cosine function.
- A sinusoidal current is called alternating current (ac). It reverses at regular time internals and has alternately positive and negative values
- AC circuits are circuits driven by sinusoidal current or voltages.



Considering a sinusoidal voltage,

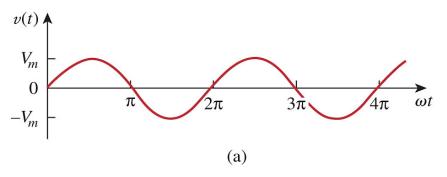
$$v(t) = V_m \sin \omega t$$

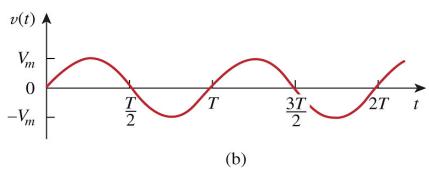
where

Vm = the amplitude of the sinusoid

 ω = the angular frequency in radians/s

 ωt = the argument of the sinusoid





$$\omega T = 2\pi$$

$$T=\frac{2\pi}{\omega}$$

A <u>periodic function</u> is one that satisfies v(t) = v(t + nT), for all t and for all integers n

$$f=\frac{1}{T}$$

F is in Hertz (Hz)

$$\omega = 2\pi f$$

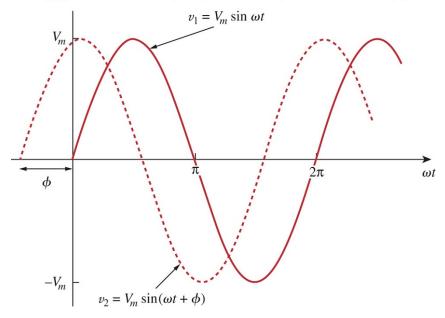
 ω is in radians per second

A more general expression for a sinusoid

$$v(t) = V_m \sin(\omega t + \phi)$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 Φ = the phase

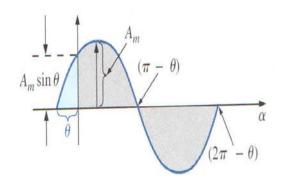


- Only two sinusoidal values with the <u>same frequency</u> can be compared by their amplitude and phase difference.
- If phase difference is zero, they are in phase; if phase difference is not zero, they are out of phase.

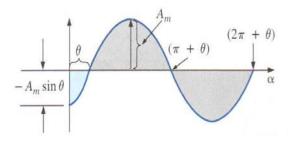
- A sinusoid can be expressed in either sine or cosine form.
- When comparing two sinusoids, it is better to express both as either sine or cosine with positive amplitudes.
- To achieve this, 2 approaches can be used:
 - 1. Trigonometric identities
 - 2. Graphical approach

```
\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B
\cos(A \pm B) = \cos A \sin B \mp \sin A \cos B
\sin(\omega t \pm 180^{\circ}) = -\sin \omega t
\cos(\omega t \pm 180^{\circ}) = -\cos \omega t
\sin(\omega t \pm 90^{\circ}) = \pm \cos \omega t
\cos(\omega t \pm 90^{\circ}) = \mp \sin \omega t
```

Phase Relations



$$A_m\sin(\omega t+\theta)$$



$$A_m\sin(\omega t-\theta)$$

Practice Problem 9.1

Given the sinusoid $5 \sin(4\pi t - 60^{\circ})$, calculate its amplitude, phase, angular frequency, period and frequency.

Practice Problem 9.2

Find the phase angle between $i_1 = -4\sin(377t + 25^o)$ and $i_2 = 5\cos(377t - 40^o)$. Does i_1 lead or lag i_2 ?

PHASORS

- A phasor is a complex number that represents the amplitude and phase of a sinusoid.
- It can be represented in one of the following three forms:

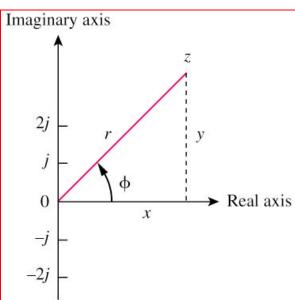
a. Rectangular
$$z = x + jy = r(\cos \phi + j \sin \phi)$$

$$z = r \angle \phi$$

c. Exponential

where
$$r = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1} \frac{y}{x}$$



Mathematic operation of complex number:

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$$

$$z_1 z_2 = r_1 r_2 \angle \phi_1 + \phi_2$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \phi_1 - \phi_2$$

$$\frac{1}{z} = \frac{1}{r} \angle -\phi$$

$$\sqrt{z} = \sqrt{r} \angle \phi/2$$

Complex conjugate
$$z^* = x - jy = r \angle - \phi = re^{-j\phi}$$

$$e^{\pm j\phi} = \cos\phi \pm j\sin\phi$$

Transform a sinusoid to and from the time domain to the phasor domain:

$$v(t) = V_m \cos(\omega t + \phi) \longleftrightarrow V = V_m \angle \phi$$
 (time domain) (phasor domain)

- Amplitude and phase difference are two principal concerns in the study of voltage and current sinusoids.
- Phasor will be defined from the <u>cosine function</u> in all our proceeding study. If a voltage or current expression is in the form of a sine, it will be changed to a cosine by subtracting from the phase.

Sinusoidal-Phasor Transformation

Time domain representation

$$V_m = \cos(\omega t + \varphi)$$

$$V_m = \sin(\omega t + \varphi)$$

$$I_m = \cos(\omega t + \varphi)$$

$$I_m = \sin(\omega t + \varphi)$$

Phasor domain representation

$$V_m \angle \phi$$

$$V_m \angle \phi - 90^0$$

$$I_m \angle \phi$$

$$I_m \angle \phi - 90^0$$

The differences between v(t) and V:

- v(t) is instantaneous or <u>time-domain</u> representation
 V is the frequency or phasor-domain representation.
- v(t) is time dependent, V is not.
- v(t) is always real with no complex term, V is generally complex.

<u>Note</u>: Phasor analysis applies only when frequency is constant; when it is applied to <u>two or more</u> sinusoid signals only if they have the <u>same frequency</u>.

Relationship between differential, integral operation in phasor listed as follow:

$$v(t) \longleftrightarrow V = V \angle \phi$$

$$\frac{dv}{dt} \longleftrightarrow j\omega V$$

$$\int vdt \longleftrightarrow \frac{V}{j\omega}$$

Practice Problem 9.4

Express these sinusoids as phasors:

a.
$$v = 7\cos(2t + 40^{\circ})V$$

b.
$$i = -4\sin(10t + 10^0)A$$

Practice Problem 9.5

Find the sinusoids corresponding to these phasors:

b.
$$j(5 - j12) A$$

Practice Problem 9.6

If
$$v_1 = -10\sin(\omega t - 30^0)V$$
 and $v_2 = 20\cos(\omega t + 45^0)V$.

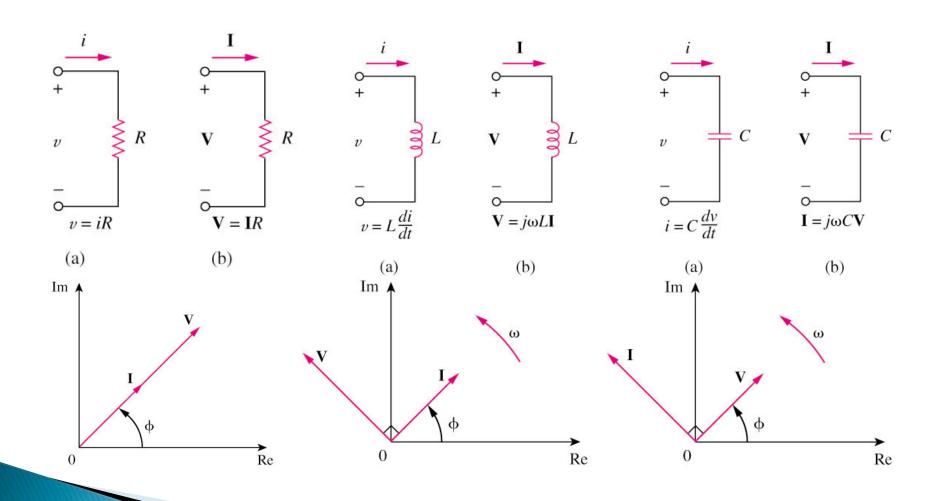
Find
$$v = v_1 + v_2$$

Practice Problem 9.7

Find the voltage v(t) in a circuit described by the integrodifferential equation

$$2\frac{dv}{dt} + 5v + 10 \int v \, dt = 50 \cos(5t - 30^0)$$

PHASORS RELATIONSHIPS FOR CIRCUIT ELEMENTS



PHASORS RELATIONSHIPS FOR CIRCUIT ELEMENTS

Summary of voltage-current relationship		
Element	Time domain	Frequency domain
R	v = Ri	V = RI
L	$v = L \frac{di}{dt}$	$V = j\omega LI$
C	$i = C \frac{dv}{dt}$	$V = \frac{I}{j\omega C}$

Practice Problem 9.8

If $v = 10\cos(100t + 30^o)$ is applied to a $50\mu F$ capacitor, calculate the current through the capacitor.

Example 9.8

The voltage $v = 12\cos(60t + 45^{\circ})$ is applied to a 0.1-H inductor. Find the steady-state current through the inductor.

Practice Problem 9.3

Evaluate the following complex numbers:

(a)
$$[(5+j2)(-1+j4)-5\angle 60^o)]^*$$

(b)
$$\frac{10+j5+3\angle 40^o}{-3+j4} + 10\angle 30^o + j5$$

IMPEDANCE & ADMITTANCE

- The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, measured in ohms Ω . It is a frequency-dependent quantity.
- It represents the opposition that the circuit exhibits to the flow of sinusoidal current.

$$Z = \frac{V}{I} = R + jX = |Z| \angle \theta$$

where $R = Re\ Z$ is the resistance and $X = Im\ Z$ is the reactance.

The admittance Y is the <u>reciprocal</u> of impedance, measured in siemens (S).

$$Y = \frac{1}{Z} = \frac{I}{V} = G + jB$$

where $G = Re\ Y$ is the conductance and $B = Im\ Y$ is the susceptance.

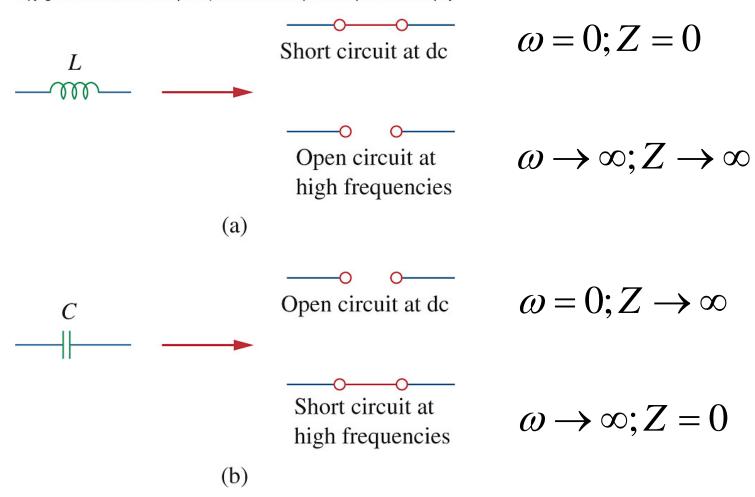
Impedance & Admittance

Impedances and admittances of passive elements

Element	Impedance	Admittance
R	Z = R	$Y = \frac{1}{R}$
L	$Z = j\omega L$	$Y = \frac{1}{j\omega L}$
C	$Z = \frac{1}{j\omega C}$	$Y = j\omega C$

$$Z = R + jX$$
 inductive/lagging (/ lags V)
 $Z = R - jX$ capacitive/leading (/ leads V)

Impedance & Admittance

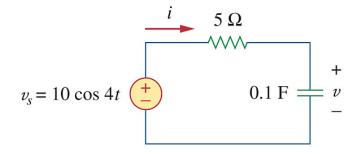


Impedance & Admittance

Example 9.9

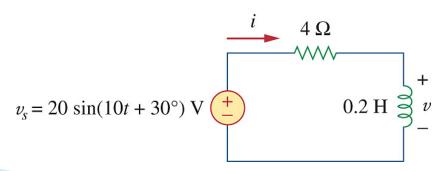
Find v(t) and i(t) in the circuit below:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

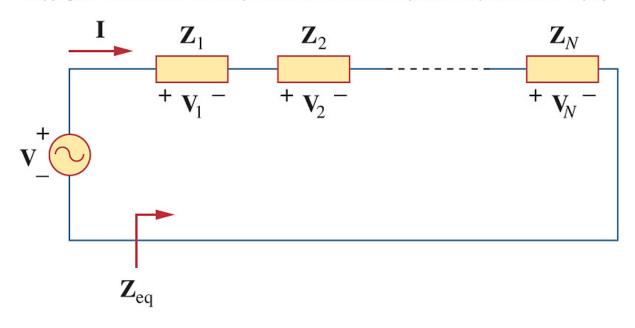


Practice Problem 9.9

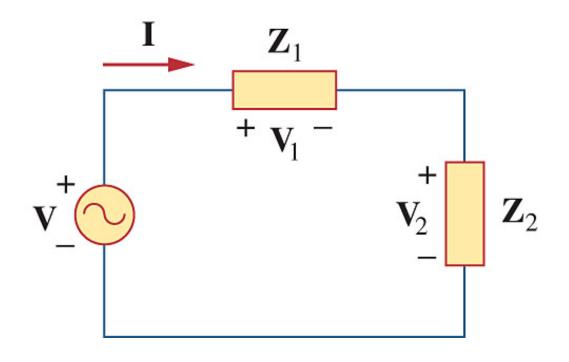
Determine v(t) and i(t) in the circuit below:



- Both KVL and KCL are hold in the <u>phasor domain</u> (<u>frequency domain</u>).
- Variables to be handled are <u>phasors</u>, which are <u>complex numbers</u>.
- All the mathematical operations involved are now in complex domain.
- The following principles used for DC circuit analysis all apply to AC circuit:
 - a.voltage division
 - b.current division
 - c.circuit reduction
 - d.impedance equivalence
 - e.Y-Δ transformation

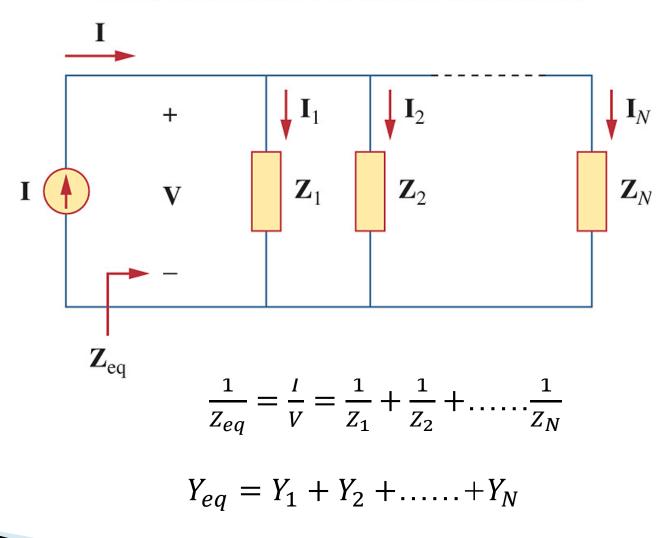


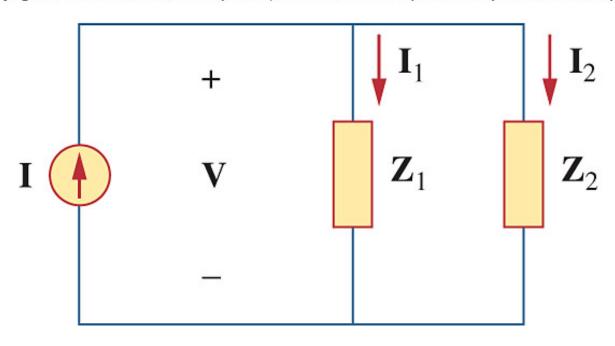
$$Z_{eq} = Z_1 + Z_2 + \dots + Z_N$$



$$V_1 = \frac{Z_1}{Z_1 + Z_2} V$$

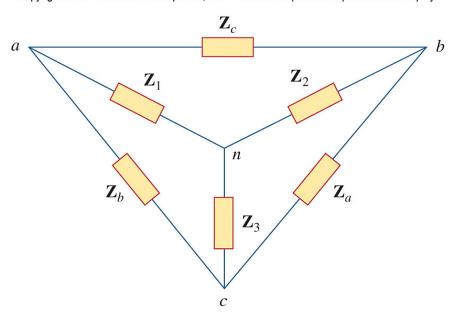
$$V_2 = \frac{Z_2}{Z_1 + Z_2} V$$





$$I_1 = \frac{Z_2}{Z_1 + Z_2} I$$

$$I_2 = \frac{Z_1}{Z_1 + Z_2} I$$



$$Z_a = \frac{Z_1 Z_2 + Z_2 Z_3 + Z_3 Z_1}{Z_1}$$

$$Z_b = \frac{Z_1 Z_2 + Z_2 Z_3 + Z_3 Z_1}{Z_2}$$

$$Z_c = \frac{Z_1 Z_2 + Z_2 Z_3 + Z_3 Z_1}{Z_3}$$

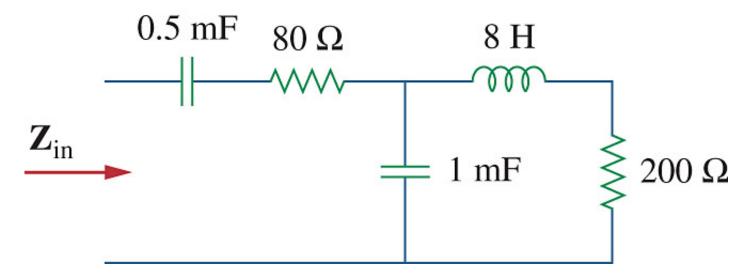
$$Z_1 = \frac{Z_b Z_c}{Z_a + Z_b + Z_c}$$

$$Z_2 = \frac{Z_c Z_a}{Z_a + Z_b + Z_c}$$

$$Z_3 = \frac{Z_a Z_b}{Z_a + Z_b + Z_c}$$

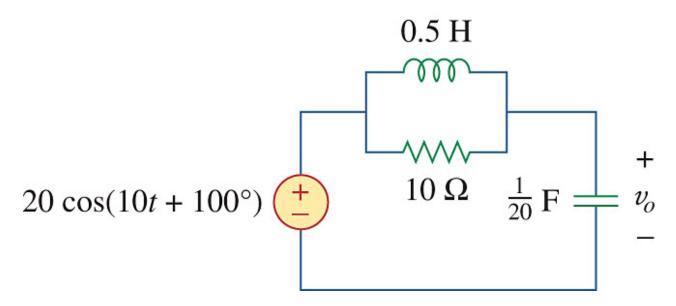
Practice Problem 9.10

Determine the input impedance of the circuit below at $\omega = 10 \, rad/s$



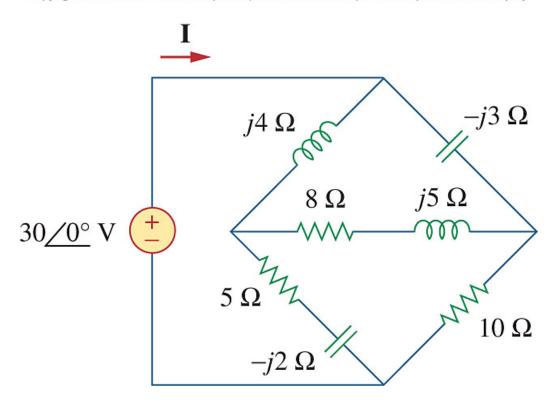
Practice Problem 9.11

Calculate v_o in the circuit below:



Practice Problem 9.12

Find I in the circuit below:



TUTORIALS (sinusoids)

Problem 9.6

For the following pairs of sinusoids, determine which one leads and by how much.

- 1. $v(t) = 10 \cos(4t 60^\circ)$ and $i(t) = 4 \sin(4t + 50^\circ)$
- 2. (b) $v_1(t) = 4 \cos(377t + 10^\circ)$ and $v_2(t) = -20 \cos 377t$
- 3. (c) $x(t) = 13 \cos 2t + 5 \sin 2t$ and $y(t) = 15 \cos(2t 11.8^\circ)$

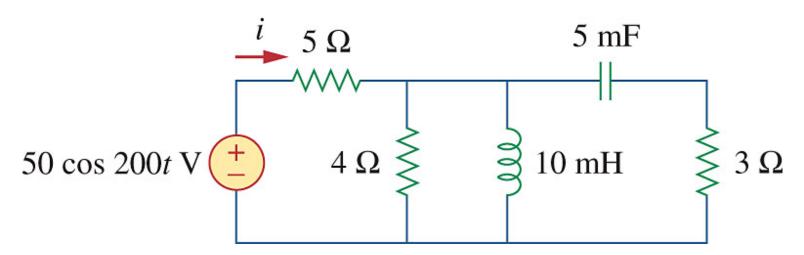
TUTORIALS (Phasors)

- 1. Find the phasors corresponding to the following signals.
 - (a) $v(t) = 21 \cos(4t-15^{\circ}) V$
 - (b) $i(t) = -8 \sin(10t + 70^{\circ}) \text{ mA}$
 - (c) $v(t) = 120 \sin (10t -50^{\circ}) V$
 - (d) $i(t) = -60\cos(30t + 10^{\circ}) \text{ mA}$
- 2. Using phasors, find:
 - (a) $3\cos(20t + 10^\circ) 5\cos(20t 30^\circ)$
 - (b) $40 \sin 50t + 30 \cos (50t 45^{\circ})$
 - (c) $20 \sin 400t + 10 \cos (400t + 60^\circ) 5 \sin(400t 20^\circ)$
- 3. Find $\nu(t)$ in the following integrodifferential equations using the phasor approach:
 - (a) $v(t) + \int v \, dt = 5\cos(t + 45^{\circ}) \text{ V}$
 - (b) $\frac{dv}{dt} + 5v(t) + 4 \int v \, dt = 20 \sin(4t + 10^{\circ}) \text{ V}$

TUTORIALS (Impedance & Admittance)

Problem 9.44

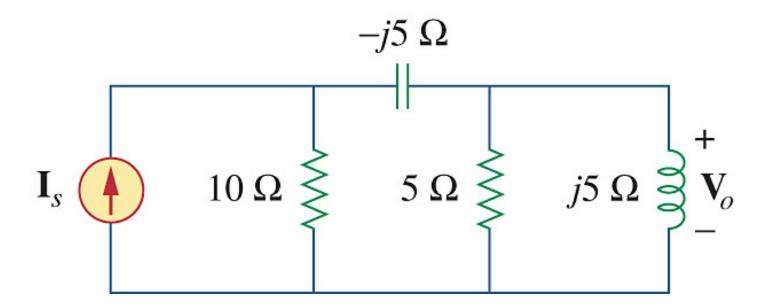
Calculate i(t) in the circuit below:



TUTORIALS (Impedance & Admittance)

Problem 9.52

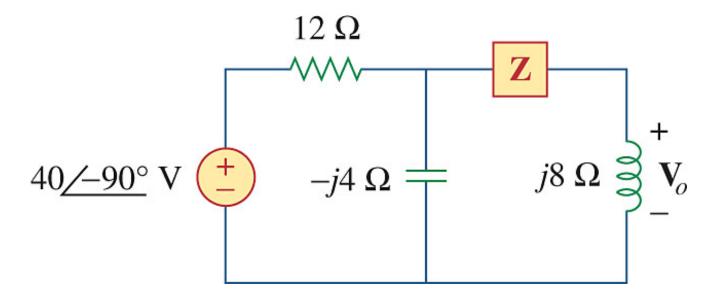
If $V_o = 20 \angle 45^o$ V in the circuit, find I_s :



TUTORIALS (Impedance & Admittance)

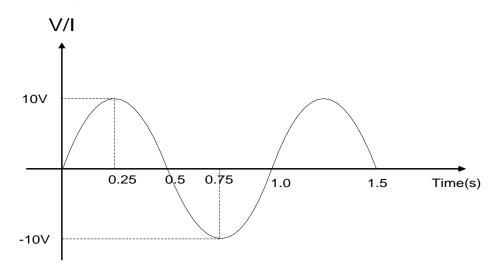
Problem 9.55*

Given $V_o = 8 \angle 0^o$ V, find the Z. What are the elements are contained in Z? Calculate the value of their resistances/reactances if the system frequency is 50 Hz.



Instantaneous Value

- Instantaneous value is magnitude value of waveform at one specific time.
- Symbol for Instantaneous value of voltage is v(t) and current is i(t).
- Example of Instantaneous value for voltage is shown:



$$v(0.25) = 10V$$

 $v(0.5) = 0V$
 $v(0.75) = -10V$
 $v(1.0) = 0V$

Average Value

- Average value is average value for all instantaneous value in half or one complete waveform cycle.
- It can be calculate in two ways:
 - 1. Calculate the area under the graph:

Average value = <u>area under the function in a period</u> period

2. Use integral method

$$average_value = \frac{1}{T} \int_{0}^{T} v(t)dt$$

Average Value

For example

Instantaneous power:

$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i)$$

Average power:

$$P = \frac{1}{T} \int_0^T p(t)dt = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Effective value

- The most common method of specifying the amount of sine wave of voltage or current by relating it into dc voltage and current that will produce the same heat effect.
- It is called root means square value, rms
- The formula of effective value for sine wave waveform is

$$V_{rms} = \frac{v_m}{\sqrt{2}} = 0.7071v_m$$

where $I_m \& V_m$ are peak values

$$I_{rms} = \frac{i_m}{\sqrt{2}} = 0.7071i_m$$

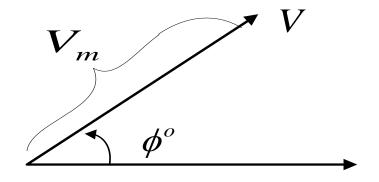
Phasor Diagram

■ For example, if given a sine wave waveform

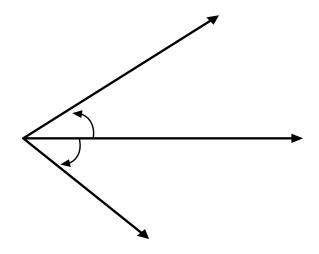
$$v(t) = V_m \cos(\omega t + \phi^0)V$$

It can be represent by a phasor diagram

$$V = V_m \angle \phi^0$$



Phasor Diagram



From the phase diagram above, it can be conclude that:

- i) I leading V for θ° degree or V lagging I for θ° degree
- ii) V leading V1 for Φ° degree or V1 lagging V for Φ° degree
- iii) I leading V1 for (Φ° + θ°) degree or V1 lagging I for (Φ° + θ°) degree

Example

Given the circuit below, sketch the phasor diagram of V_S , V_R , V_L , V_C , I_S .

