
Introduction to C

Week 4

4.1 Parts of a C Program

A Simple of C Program

/*C Programming: To print a message on screen*/

#include <stdio.h>

#include <conio.h>

void main ()

{

printf("My First C Program\n");

getch();

}

My First C Program
• Output:

A Simple of C Program

Special Characters

Character Name Meaning
/* Slash star Beginning of a comment

/**/ Star slash End of a comment

Pound sign Beginning of preprocessor
directive

< > Open/close brackets Enclose filename in #include

() Open/close
parentheses

Used when naming a
function

{ } Open/close brace Encloses a group of
statements

" " Open/close
quotation marks

Encloses string of
characters

; Semicolon End of a programming
statement

6

Preprocessor Directives

• Begin with #

• Instruct compiler to perform some

transformation to file before compiling

• Example: #include <stdio.h>

– add the header file stdio.h to this file

– .h for header file

– stdio.h defines useful input/output functions

7

Functions

• Consists of header and body

– header: void main ()

– body: contained between { and }

• starts with location declarations

• followed by series of statements

• More than one function may be defined

• Functions are called (invoked) - more later

8

Main Function

• Every program has one function main

• Header for main: void main ()

• Program is the sequence of statements

between the { } following main

• Statements are executed one at a time

from the one immediately following to main

to the one before the }

9

Comments

• Text between /* and */

• Used to “document” the code for the

human reader

• Ignored by compiler (not part of program)

• Have to be careful

– comments may cover multiple lines

– ends as soon as */ encountered (so no

internal comments - /* An /* internal */

comment */)

10

Comment Example

#include <stdio.h>

/* This comment covers

* multiple lines

* in the program.

*/

int main () /* The main header */ {

/* No local declarations */

printf(“Too many comments\n”);

} /* end of main */

11

Inner Comment

4.2 Tracing a simple C program

Another simple C program

/*The greeting program. This program demonstrates

some of the components of a simple C program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

Another simple C program

/*The greeting program. This program demonstrates

some of the components of a simple C program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

A comment is any text between /*

and */

Use comments liberally to explain

your program and all its parts.

The compiler ignores all comments.

Another simple C program: Comments

• Comments in C may span several lines.
/* this

is

one

comment */

/* this is

another comment

*/

Another simple C program: Comments

• Suggestion: Line up comment delimiters vertically and

use symbols such as asterisks to make your program

more readable.

• Examples:

/* This function reads a sequence of temperatures and

* computes the average.

*/

/**************************************

* This program simulates a simple calculator. *

* It reads two numbers and an operation *

* (add, subtract, multiply or divide) and then *

* computes and prints the result. *

***************************************/

Another simple C program

/*The greeting program. This program demonstrates

some of the components of a simple C

program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

This is a preprocessor

directive. All preprocessor

directives start with a #

#include

means "read in

this file, too" or inserts

the contents of another

file into the program

stdio.h is the library that

provides standard input/output

functions (such as printf)

Files ending in .h are called

header files.

Another simple C program

/*The greeting program. This program demonstrates

some of the components of a simple C

program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

Program execution always begins

in the main function.

All C programs must have a main

function.

main() usually holds calls to

other functions

Another simple C program

/*The greeting program. This program demonstrates

some of the components of a simple C

program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

All functions use opening and

closing braces to mark the

beginning and the end of the

function.

The block of statements

between these curly

braces is called the body

of the function.

Another simple C program

/* helloworld.c

This program prints "Hello world!" on the screen.

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

Function = a block of statements

with a given name.

This is the definition of a function

called main, which contains two

statements.

main() is invoked

(called) automatically

when a program begins

execution. Other

functions can be called

from inside main()

Another simple C program: Statements

• A statement is the basic building block of a

program. It usually translates to one or more

machine instructions.

• All statements end in semi-colons ;

• The main() function shown in the example has

two statements:

printf("Hello world!\n");

and

return 0;

Another simple C program: Functions

• A function is a block of statements with a

given name, which perform a well-defined

operation.

• A function has zero or more input

arguments and zero or one output values.

Another simple C program

/* The greeting program. This program

demonstrates some of the components of a

simple C program.

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

This statement calls the printf() library function to

print formatted text that we specify. The input

argument is enclosed in parentheses. It specifies the

text we want to print as well as the formatting that

arranges the printed text.

ALL statements end with a semicolon!

Another simple C program: printf()

• printf("Hello world!\n");

The text that will be printed

on the screen is

Hello world!

\n means move on to the

next line. It is called a

format control string.

We will learn more about

that later.

This statement will print Hello world! and move the

cursor to the next line.

Another simple C program

/* The greeting program. This program

demonstrates some of the components of a

simple C program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

ALL statements end with a semicolon!

return 0; means

“…the program terminated normally (or successfully)".

More about return statements later.

Another simple C program: the output

/*The greeting program. This program demonstrates

some of the components of a simple C program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

> Hello world!

>

Another simple C program

• C is case sensitive.

– printf() is NOT the same as Printf().

– All C commands (functions) are lowercase.

• To make your program more readable:

– Always write comments.

– Indent your code

4.3 What Is a Program Made Of?

What Is a Program Made Of?

• Common elements in programming

languages:

– Key Words

– Programmer-Defined Identifiers

– Operators

– Punctuation

– Syntax

Key Words

• Also known as reserved words

• Have a special meaning in C

• Can not be used for any other purpose

Key Words

/*C Programming: To print a message on screen*/

#include <stdio.h>

#include <conio.h>

int main (){

int thisYear, birthyear, age;

thisYear=2010;

birthyear=1980;

age = thisYear-birthyear;

printf("My First C Program\n");

printf("After I'm %d years old", age);

getch();

return 0;

}

Programmer-Defined Identifiers

• Names made up by the programmer

• Not part of the C language

• Used to represent various things: variables

(memory locations), functions, etc.

/*C Programming: To print a message on screen*/

#include <stdio.h>

#include <conio.h>

int main (){

int thisYear, birthyear, age;

thisYear=2010;

birthyear=1980;

age = thisYear - birthyear;

printf("My First C Program\n");

printf("After I'm %d years old", age);

getch();

return 0;

}

Programmer-Defined Identifiers

Operators

• Used to perform operations on data

• Many types of operators:

– Arithmetic - ex: +,-,*,/

– Assignment – ex: =

/*C Programming: To print a message on screen*/

#include <stdio.h>

#include <conio.h>

int main (){

int thisYear, birthyear, age;

thisYear=2010;

birthyear=1980;

age = thisYear - birthyear;

printf("My First C Program\n");

printf("After I'm %d years old", age);

getch();

return 0;

}

Operators

Punctuation

• Characters that mark the end of a

statement, or that separate items in a list

/*C Programming: To print a message on screen*/

#include <stdio.h>

#include <conio.h>

int main (){

int thisYear, birthyear, age;

thisYear=2010;

birthyear=1980;

age = thisYear - birthyear;

printf("My First C Program\n");

printf("After I'm %d years old", age);

getch();

return 0;

}

Punctuation

Syntax

• The rules of grammar that must be

followed when writing a program

• Controls the use of key words, operators,

programmer-defined symbols, and

punctuation

Exercise Week4_1

• Refer to Program 1.4 in pg. 14

• Identify the following elements

– Key Words

– Programmer-Defined Identifiers

– Operators

– Punctuation

– Syntax

Exercise Week4_1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

//Program 1.4

//Nama pengaturcara: Norazah Yusof

#include <stdio.h>

#include <conio>

int main (void)

{

int workDays;

float workHours, payRate, weeklyPay;

workDays = 5;

workHours = 6.5;

payRate = 20.50;

weeklyPay = workDays * workHours * payRate;

printf ("Weekly Pay = %f", weeklyPay);

printf ("\n");

getch();

return 0;

}

4.4 Memory & Data Storage

Bits, bytes and memory

• Our computer's memory

can be seen as a

sequence of cells.

• Each cell is 8 bits (one

byte) large.

• Data is stored by setting

these bits to 1s and 0s.

• 8bits = 1 byte

• 2 bytes = 1 word

• 2 words = 1 long word

1

0

2

5

3

4

stored

bytes

00000000

11111111

11001100

11110000

00001111

00110011

11001100

10101010

7 … 0

Bits, bytes and memory (cont.)

• Each cell has an address.

• We don't need to know (or

care to know) what this

address is.

• Our system uses the address

to locate the data stored there.

• Max value stored in and

address:

– 25510 (111111112)

• Min value stored in and

address:

– 010 (000000002)

1

0

2

5

A
d
d
ress




3

4

stored

bytes

00000000

11111111

11001100

11110000

00001111

00110011

11001100

10101010

7 … 0

4.5 Variables

Variables

• We need to be able to store data in memory,

during the execution of our program.

• We also need to be able to access and even

modify this data.

• Solution : variables

• A variable is a reserved location in memory that

– has a name

– has an associated type (for example, integer)

– holds data which can be modified

Variables

• In order to use a variable in our program we

must first declare it.

• HOW?

– A declaration statement has the format:
type variable_name ;

– type : what kind of data will be stored in that location

(integer? character? floating point?)

– variable_name : what is the name of the variable?

– semi-colon : this is a statement!

Variables

/*

* Converts distance in miles to kilometers.

*/

#include <stdio.h> /* printf, scanf definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void)

{

double miles, /* input - distance in miles. */

kms; /* output - distance in kilometers */

/* Get the distance in miles. */

printf("Enter the distance in miles> ");

scanf("%lf", &miles);

/* Convert the distance to kilometers. */

kms = KMS_PER_MILE * miles;

/* Display the distance in kilometers. */

printf("That equals %f kilometers.\n", kms);

return (0);

}

Variables declaration

Variable types

• There are four basic data types in C

Type

Integer

Floating point

Character

C keyword to use:

int

float

double

char

Variable names

• Selecting good variable names is important for

program readability.

• A variable name must be descriptive of the data

that will be stored in the variable.

• It must not be too long.

• It must not be a single character

Variable values

• After a variable has been declared, its memory

location contains randomly set bits. In other

words, it does not contain any valid data.

• The value stored in a variable must be initialized

before we can use it in any computations.

• There are two ways to initialize a variable:

– by assigning a value using an assignment

statement

– by reading its value from the keyboard (more

on that later)

Variable values

• The basic syntax of an assignment

statement is
variable = value ;

• Example

assign the value on the right hand side

to the variable on the left hand side

int num_students;

num_students = 22;

5.5 Variables and Literals

Variables and Literals

• Variable: a storage location in memory

– Has a name and a type of data it can hold

– Must be defined before it can be used:

int item;

Literals

• Literal: a value that is written into a

program‟s code.

"hello, there" (string literal)

12 (integer literal)

Literals

• Are used to initialize a variable.

• Example:
char keypressed;

keypressed = „y‟; /* „y‟ is a character literal */

• Example:
double pi;

pi = 3.14; /* 3.14 is a floating-point literal.

Floating-point literals are of

type double by default */

• Example:
int index;

index = 17; /* 17 is an integer literal */

Example of literal usage

/* sample program that demonstrates

variable declaration and

initialization. */

#include <stdio.h>

int main () {

int num_students;

num_students = 22;

return 0;

}

22 is an integer literal

Example of literal usage

/* sample program that demonstrates variable

declaration and initialization. */

#include <stdio.h>

int main () {

double rate, amount; /* declare two

double variables */

amount = 12.50;

rate = 0.05;

return 0;

}

double literal

Example of literal usage

/*The greeting program. This program demonstrates

some of the components of a simple C program.

Written by: your name here

Date : date program written

*/

#include <stdio.h>

int main () {

printf("Hello world!\n");

return 0;

}

This is also a string literal

5.6 Identifiers

Identifiers

• An identifier is a programmer-defined

name for some part of a program:

variables, functions, constants and

label.

• 2 type of identifier:

1. Standard identifier – used in C library e.g.
printf and scanf

2. User defined identifier – 3 objectives of the

identifier are variable, constant & function

User Defined Identifiers

• Identifiers rules:

– Consists a combination of letters, digits,

underscore (_)

– Cannot begin with a digit.

– Upper- and lowercase characters are

distinct

– Only the first 31 characters of a variable

name are significant. The rest are ignored.

– A C-keywords word cannot be used

C Keywords

You cannot use any of the C key words as an
identifier. These words have reserved meaning.

auto extern sizeof #define

break float static #include

case for struct

char goto switch

const if typedef

continue int union

default long unsigned

do register void

double return volatile

else short while

enum signed

Valid and Invalid Identifiers

IDENTIFIER VALID? REASON IF INVALID

totalSales Yes

total_Sales Yes

total.Sales No Cannot contain .

4thQtrSales No Cannot begin with digit

totalSale$ No Cannot contain $

VALID INVALID REASON IF INVALID

utm 2utm

_bek meow?

rekod_201 rekod-301

ifi if

Exercise Week4_2

Exercise Week4_3

• Identify 7 errors in the following program.
#include <stdio.h>

#include <conio.h>

int main (){

int nama_yang_tersangat_panjang_jenis_int;

float nama_yang_tersangat_panjang_jenis_float;

const float kadar = 25.23, goto=1.3;

float pinjambank, pinjamkawan, samanpolis,hutang;

char kod;

int bil_guli = 5.0;

Hutang= pinjambank*kadar+pinjambak+pinjamkawan+samanpolis;

kadar=20.1; nama_yang_tersangat_panjang_jenis_int =80000;

kod = 66;

}

User Defined Identifiers : Constants

• Constant = named memory location that

holds a non-changeable value

– MUST be initialized with a value

– Can not be modified after initialization

• 2 ways to declare constant

– Using type qualifier const

– Using #define preprocessor directive

User Defined Identifiers : Constants

• Declared using type qualifier const

int main () {

const double pi = 3.14;

double area, radius;

radius = 12;

area = pi * radius * radius;

return 0;

}

#define preprocessor directive

• Syntax:
#define NAME value

the name is usually

capitalized
preprocessor directives

are not statements.

There should be no

semicolon at the end.

#define preprocessor directive

• Example use:

#define PI 3.14

int main () {

double area, radius;

radius = 12.1;

area = PI * radius * radius;

return 0;

}

Instructs preprocessor to replace all

occurrences of PI with 3.14

NOTE : no semicolon after preprocessor directives!

#define preprocessor directive

• Advantage : if you need to change the

value, you only have to do it once

#define PI 3.14

int main () {

double area, radius;

double circumference

radius = 12.6;

area = PI * radius * radius;

circumference = 2 * PI * radius;

return 0;

}

if I want to change the value of PI

to 3.14159, I only have to do it here

and the preprocessor will take care

of the rest.

2.6 Integer Data Types

Integer Data Types

• Integer variables can hold whole numbers such
as 12, 7, and -99.

Defining Variables

• Variables of the same type can be defined
- On separate lines:

int length;

int width;

unsigned int area;

- On the same line:

int length, width;

unsigned int area;

• Variables of different types must be in
different definitions

Integer Literals

• An integer literal is an integer value that

is typed into a program‟s code. For

example:

itemsOrdered = 15;

In this code, 15 is an integer literal.

Integer Literals

• Integer literals are stored in memory as ints
by default

• To store an integer constant in a long memory
location, put „L‟ at the end of the number:
1234L

• Constants that begin with „0‟ (zero) are base 8:
075

• Constants that begin with „0x‟ are base 16:
0x75A

Exercise Week4_4

• Refer to Algorithm 2.4 in Lab 2 pg. 18

• Convert the algorithm into correct C++

code to calculate the total of three integer

numbers.

2.7 The char Data Type

The char Data Type

• Used to hold characters or very small

integer values

• Usually 1 byte (8 bits)of memory

• Numeric value of character from the

character set is stored in memory:

CODE:
char letter;

letter = 'C';

MEMORY:
letter

67

Character Constants

• Character literals must be enclosed in

single quote marks. Examples:

‘A’, '\n‘

• IMPORTANT : Note that the value of a

character is enclosed in single quotes.

• Each character is essentially "encoded" as

an integer.

• A computer normally stores characters using the ASCII

code (American Standard Code for Information

Exchange)

– ASCII is used to represent

• the characters A to Z (both upper and lower case)

• the digits 0 to 9

• special characters (e.g. @, <, etc)

• special control codes

– For example,

• the character 'A' is represented by the code 65

• the character '1' is represented by the code 49
– IMPORTANT: the integer 1, the character '1' and the ASCII

code 1 represent three different things!

Character Constants

• char (continued)

– Part of ASCII Table

– The decimal code

will be converted

into binary (stored

as a integer byte)

– E.g. A

• = 65

(decimal)

• = 0100 0001

(binary)

Decimal

(code)

Symbol

65

66

67

68

69

:

97

98

99

100

101

A

B

C

D

E

:

a

b

c

d

e

Character Constants

Character Constants

• Escape sequences –

enable the use of

special symbols.

Char Special symbols

„\n‟ New line

„\t‟ horizontal tab

„\v‟ vertical tab

„\r‟ carriage return

„\b‟ backspace

„\f‟ formfeed

„\\‟ Backslash (\)

„\x41‟ Hexa 0x41

„\101‟ Octal 101

„\0‟ null

Character Strings

• A series of characters in consecutive
memory locations:
"Hello"

• Stored with the null terminator, \0, at the
end:

• Comprised of the characters between the
" "

H e l l o \0

2.8 Floating-Point Data Types

Floating-Point Data Types

• The floating-point data types are:
float
double
long double

• They can hold real numbers such as:
12.45 -3.8

• Stored in a form similar to scientific notation

• All floating-point numbers are signed

Floating-Point Data Types

Floating-point Literals

• Can be represented in

– Fixed point (decimal) notation:

31.4159 0.0000625

– E notation:

3.14159E1 6.25e-5

• Are double by default

• Can be forced to be float (3.14159f) or
long double (0.0000625L)

Exercise Week4_5

• Refer to Lab 4 Exercise 2 no. 1 in pg. 46

• Solve the problem.

2.11 Variable Assignments and
Initialization

Variable Assignments and Initialization

• An assignment statement uses the =

operator to store a value in a variable.

item = 12;

• This statement assigns the value 12 to the
item variable.

Assignment

• The variable receiving the value must

appear on the left side of the = operator.

• This will NOT work:

// ERROR!

12 = item;

Variable Initialization

• To initialize a variable means to assign it

a value when it is defined:

int length = 12;

• Can initialize some or all variables:

int length = 12, width = 5, area;

Variable Initialization - example

/*This program shows variable initialization*/

#include <stdio.h>

#include <conio.h>

int main (){

int thisYear=2010, birthyear=1980, age;

age = thisYear-birthyear;

printf("My First C Program. ");

printf("After I'm %d years old.", age);

getch();

return 0;

}

My First C Program

After I'm 30 years old

• Output:

2.12 Scope

Scope

• The scope of a variable: the part of the

program in which the variable can be

accessed

• A variable cannot be used before it is

defined

Scope - example

int main (){

nilai1 = 4;

int nilai1 ;

printf("%d", nilai1);

getch();

return 0;

}

Error! nilai1 not defined yet

Structure of C Program

Structure of C Program

/*C Programming: To print a message on screen*/

#include <stdio.h>

#include <conio.h>

int main (){

int thisYear, birthyear, age;

thisYear=2010;

birthyear=1980;

age = thisYear-birthyear;

printf("My First C Program\n");

printf("After I'm %d years old", age);

getch();

return 0;

}

My First C Program

After I'm 30 years old

• Output:

Preprocessor Directive

No Global
VariableLocal

Variables

Statements

99

Program Execution

• Global declarations set up

• Function main executed

– local declarations set up

– each statement in statement section executed

• executed in order (first to last)

• changes made by one statement affect later

statements

Exercise Week4_6

• Refer to Exercise 3 no. 1-6 in pg. 47

• Solve the problem.

2.15 Programming Style

Programming Style

• The visual organization of the source

code

• Includes the use of spaces, tabs, and

blank lines

• Does not affect the syntax of the program

• Affects the readability of the source code

Programming Style

Common elements to improve readability:

• Braces { } aligned vertically

• Indentation of statements within a set of
braces

• Blank lines between declaration and
other statements

• Long statements wrapped over multiple
lines with aligned operators

#include <stdio.h>/* My first C program which prints Hello World */

int main(){printf("Hello World!\n");return 0;}

#include <stdio.h>

/* My first

C program

which prints

Hello World */

int

main

(

)

{

printf

(

"Hello World!\n"

)

;

return

0

;

}

Both of these programs are exactly

the same as the original as far as

your compiler is concerned.

Note that words have to be kept together

and so do things in quotes.

C doesn’t care much about spaces

Indentation

• As you can see, the two statements in the body of

main() do not line up with the rest of the code.

• This is called indentation.

• Orderly indentation is very important; it makes your

code readable.

– The C compiler ignores white space

– The Borland C++ editor will help you ("smart

indenting“)

int main () {

printf("Hello world!\n");

return 0;

}

#include <stdio>

main ()

{

int umur;

umur = 125;

printf("umur saya %d tahun", umur);

}

Good Style

• Format 1

#include <stdio> main () { int umur;

umur = 125; printf("umur saya %d tahun", umur); }

• Format 2

Good Style

#include <stdio>

main () {

int umur;

umur = 125;

printf("umur saya %d tahun", umur);

}

• Format 3

#include <stdio>

main () { int

umur;

umur

= 125;

printf("

umur saya %d tahun", umur

);

}

• Format 4

Thank You

Q & A

