
SCP1103 Basic C Programming
SEM1 2010/2011

Arithmetic Expressions

Week 5

3.1 The scanf

The scanf

• scanf, requires stdio.h file

• Used to read input from keyboard

• The scanf has two arguments

• The first argument, the format control string,

indicates the type of data that should be

input by the user.

• The second argument begins with an

ampersand (&)—called the address operator

in C—followed by the variable name.

The scanf

• This scanf has two arguments, "%d" and

&integer1.

• The %d conversion specifier indicates that the

data should be an integer (the letter d stands

for “decimal integer”).

• The ampersand, when combined with the

variable name, tells scanf the location (or

address) in memory at which the variable

integer1 is stored

Displaying a Prompt

• A prompt is a message that instructs the

user to enter data.

• You should always use printf to display a

prompt before each scanf statement.

printf("Enter first integer\n"); /* prompt */

scanf("%d", &integer1); /* read an integer */

The scanf

• Can be used to input more than one value:

scanf ("%d %d", &integer1, &integer2);

• Order is important: first value entered goes to

first variable, etc.

Example

#include "stdio.h‖

int main()

{

int minx, x, y, z;

printf("Enter four ints: ");

scanf(‖%d %d %d %d", &minx, &x, &y, &z);

printf("You wrote: %d %d %d %d", minx, x, y, z);

return 0;

}

Format specifiers

– %c for single characters
• scanf(" %c", &some_character);

– %d for integers
• scanf ("%d", &some_integer);

– %f for float
• scanf ("%f", &some_float);

– %lf for double
• scanf ("%lf", &some_double);

always put a space between " and % when reading characters

Reading Strings with scanf

• Can be used to read in a string

• Must first declare an array to hold characters in
string:

char str[50];

• str is name of array, 50 is the number of
characters that can be stored (the size of the
array), including the NULL character at the end

• Can be used with scanf to assign a value:
scanf("%s", str);

Example

#include <stdio.h>

#include <conio.h>

int main(){

// static declaration

char str[50] = {0};

// shorthand way to initialize all elements to 0

int n;

printf("Enter your First name and Age: ");

scanf("%s%d", str, &n); //

printf("Your name is %s and you are %d old\n", str, n);

getch();

return 0;

}

Exercise Week5_1

• Write a C program that asks the user to enter an

integer, a floating point number, and a character,

and write the results back out. All output must be

in the format shown in the sample output.

Sample input:
Enter a single character : R
Enter an array of characters: Hello
Enter an integer: 7
Enter a decimal number : 2.25

Sample output:

You entered r

You entered Hello

You entered 7

You entered 2.25

3.2 Mathematical Expressions

Primary expression

Binary expression

Assignment expression

Postfix expression

Prefix expression

Mathematical Expressions

• Can create complex expressions using
multiple mathematical operators

• An expression can be a literal, a variable, or
a mathematical combination of constants and
variables

• Can be used in assignment, printf, other
statements:
area = 2 * PI * radius;

printf ("border is: %d", 2*(l+w));

Assignment operator =

 Binary operator used to assign a value to a variable.

 Its left operand is the destination variable

 Its right operand is an expression.

int var;

var = 10;

COPY

Order of Operations

In an expression with more than one

operator, evaluate in this order:

()

- (unary negation), in order, left to right

* / %, in order, left to right

+ -, in order, left to right

In the expression 2 + 2 * 2 – 2

evaluate
first

evaluate
second

evaluate
third

Example

int z, y=-5;

z= 8 - 3 + 9 / 2 + 2 * - y;

z= 8 - (3 + 9 / 2) + 2 * - y;// try this

 8 - 3 + 9 / 2 + 2 * - y

1: - 5

3: * 10

2: / 44: - 5

5: +

6: +

9

19

Order of Operations

Show prove for the following expression

Associativity of Operators

• - (unary negation) associates right to left

• *, /, %, +, - associate left to right

• parentheses () can be used to override
the order of operations:
2 + 2 * 2 – 2 = 4

(2 + 2) * 2 – 2 = 6

2 + 2 * (2 – 2) = 2

(2 + 2) * (2 – 2) = 0

Grouping with Parentheses

Algebraic Expressions

• Multiplication requires an operator:

Area=lw is written as Area = l * w;

• There is no exponentiation operator:

Area=s2 is written as Area = pow(s, 2);

• Parentheses may be needed to maintain

order of operations:

is written as

m = (y2-y1) /(x2-x1);12

12

xx

yy
m

Algebraic and C Multiplication Expressions

Algebraic Expression Operation C Equivalent

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

Exercise Week5_2

• Write the formula in C statement.

b2 - 4ac
a + b
c + d
 1
1 + x2

3.3 When You Mix Apples and
Oranges: Type Conversion

When You Mix Apples and Oranges: Type
Conversion

• Operations are performed between operands of the same

type.

• If not of the same type, C will convert one to be the type

of the other

• The type of the result depends on the types of the

operands.

• If the types of the operands differ (e.g. an integer added

to a floating point number), one is "promoted" to other.

– The "smaller" type is promoted to the "larger" one.
char int float double

• This can impact the results of calculations.

int and double

If all operands are integer, the output will

be integer, otherwise, the output will be

double

Example

main()

{

int i1=3, i2=2, output1, output2;

double d=2.0, output3, output4;

output1 = i1/i2; /* 3/2 */

output2 = i1/d; /* 3/2.0 */

output3 = i1/i2; /* 3/2 */

output4 = i1/d; /* 3/2.0 */

}

output1 output

2

output3 output4

3.4 Type Casting

Type Casting

• Used for manual data type conversion

• Useful for floating point division using int

• Format

(data type)variable

Type Casting - exampleExample 1

double a=3.0, b=2.0, output;

output = a % b; /*syntax error!!!*/

Solution:

output = (int)a % (int)b; /*free from error!*/

Example 2

main()

{

int total_marks = 456, num_studs = 5;

double ave_marks1, ave_marks2;

ave_marks1 = total_marks/num_studs; ave_marks2 =

(double) total_marks / num_studs;

}

ave_marks1 ave_marks2

3.6 Named Constants

Named Constants

• Named constant (constant variable):
variable whose content cannot be changed
during program execution

• Used for representing constant values with
descriptive names:
const double TAX_RATE = 0.0675;

const int NUM_STATES = 50;

• Often named in uppercase letters

Named Constants - example

What will be the output?

void main()

{

const int a=5;

a++;

printf(―%d‖, a);

}

const vs. #define

• #define

#define NUM_STATES 50

– Note no ; at end

• Interpreted by pre-processor rather than

compiler

• Does not occupy memory location like
const

Exercise Week5_3

• Write a program that will convert

Malaysian Ringgit (RM) amounts to

Japanese Yen and to Euros. The

conversion factors to use are:

1 RM = 0.21734 Euros

1 RM = 36.0665 Yen

• Solve the problems using constant values.

3.7 Multiple Assignment and
Combined Assignment

Multiple Assignment and Combined
Assignment

• The = can be used to assign a value to

multiple variables:

x = y = z = 5;

• Value of = is the value that is assigned

• Associates right to left:

x = (y = (z = 5));

value
is 5

value
is 5

value
is 5

Combined Assignment

• Look at the following statement:

sum = sum + 1;

This adds 1 to the variable sum.

Other Similar Statements

Combined Assignment

• The combined assignment operators

provide a shorthand for these types of

statements.

• The statement

sum = sum + 1;

is equivalent to

sum += 1;

Combined Assignment Operators

Increment, decrement operators: ++, --

 Increment, decrement operators: ++, --

 Instead of a = a + 1 you can write a++ or ++a

 Instead of a = a - 1 you can write a-- or --a

 What is the difference?

First increment num,
then assign num to ans.
In the end,

num is 11
ans is 11

First assign num to ans,
then increment num.
In the end,

num is 11
ans is 10

num = 10;

ans = num++;

post-increment pre-increment

num = 10;

ans = ++num;

Mathematic Library Functions

• Available in C

• Can be called upon during pre-processing

#include

#include <math.h>

#include <stdlib.h>

Some functions from Maths Library

Function Library

Func.

Purpose and example Argument Output

abs(x) stdlib.h x

abs(-5)

output 5

int int

exp (x) math.h ex

exp(1.0)

output 2.71828

double double

log(x) math.h loge(x)

log((2.71828)

output 1.0

double double

pow(x, y) math.h Xy

pow(0.16, 0.5)

output 0.4

double,

double

double

sqrt(x) math.h √x and x>=0.0

sqrt(2.25)

output 1.5

double double

Thank You

Q & A

