5.2.3 Difference method

Let f(x) be a function of x and the r-th term of the series $\sum_{r=1}^{n} u_r$ is of the form $u_r = f(r) - f(r-1)$, then

$$\sum_{r=1}^{n} u_r = \sum_{r=1}^{n} [f(r) - f(r-1)]$$

$$= [f(1) - f(0)] + [f(2) - f(1)] + [f(3) - f(2)]$$

$$+ [f(4) - f(3)] + \dots + [f(n) - f(n-1)]$$

$$= -f(0) + f(n)$$

$$= f(n) - f(0).$$

To conclude,

If
$$u_r = [f(r) - f(r-1)]$$
, then $\sum_{r=1}^n u_r = [f(n) - f(0)]$.

Or equivalently

If
$$ku_r = [f(r) - f(r-1)]$$
, then $\sum_{r=1}^n u_r = \frac{1}{k} [f(n) - f(0)]$. where k is a constant.

Note: If we fail to express u_r into this form, $\lceil f(r) - f(r-1) \rceil$, then this method cannot be used.

Example 8:

Express the *r*-th term of the series

 $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + ... + r \cdot (r+1) + ...$ as the difference of two functions of r and r-1. Hence find the sum of the first n terms of the series.

Solution:

Step 1: Find the general form of the *r*-th term:

Step 2: Form another sequence f(r) by adding one more factor to the end of the general term u_r :

Step 3: Find f(r-1):

Step 4: Form the difference:

$$f(r)-f(r-1)=$$

Step 5: Find the sum:

Tips:

- (A) If the general term, u_r , of the series is in "product" form, you can **add** one more factor to the end of the general term u_r , so as to form a sequence f(r) and then apply the difference method.
- (B) If the general term, u_r , is in "quotient" form, you can **remove** one more factor at the end of the general term u_r , so as to form a sequence f(r) and then apply the difference method.

Example 9:

By using the difference method, find the sum of the first *n* terms of the series

$$\frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} + \dots + \frac{1}{(n+1)(n+2)}$$

Example (10):

Use the difference method; find the sum of the series

$$\sum_{r=1}^{n} \frac{2}{(r+2)(r+3)}.$$

5.3 Test of Convergence

5.3.1 Divergence Test

If $\sum_{r=1}^{\infty} a_r$ converges, then $\lim_{r\to\infty} a_r = 0$. Equivalently, if

 $\lim_{r\to\infty} a_r \neq 0$, or $\lim_{r\to\infty} a_r$ does not exist, then the series is

diverges.

Example (11):

Show that the series $\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$ diverges.

Example 12:

Use Divergence Test to determine whether $\sum_{r=1}^{\infty} \frac{r}{\ln r}$ diverges or not.

5.3.2 The Integral Test

Suppose f is a continuous, positive, decreasing function on

$$[1,\infty)$$
 and let $a_r = f(r)$. Then the series $\sum_{r=1}^{\infty} a_r$ is convergent

if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ is

convergent. In other words

- (a) If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{r=1}^{\infty} a_r$ is convergent.
- (b) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{r=1}^{\infty} a_{r}$ is divergent.

Note: Use this test when f(x) is easy to integrate.

Example 13:

Use the Integral Test to determine whether the following series converges or diverges.

(a)
$$\sum_{r=2}^{\infty} \frac{1}{r \ln r}.$$

(b)
$$\sum_{r=1}^{\infty} \frac{r}{\sqrt{r^2+4}}$$
.

5.3.3 Ratio Test

Let $\sum_{r=1}^{\infty} a_r$ be an infinite series with positive terms and let

$$\rho = \lim_{r \to +\infty} \frac{a_{r+1}}{a_r}.$$

- a) If $0 \le \rho < 1$, the series converges.
- b) If $\rho > 1$, or $\rho = +\infty$, the series diverges.
- c) If $\rho = 1$, the test is inconclusive.

Example 14:

Use the Ratio Test to determine whether the following series converges or diverges.

(a)
$$\sum_{r=1}^{\infty} \frac{r^2}{4^r}.$$

(b)
$$\sum_{r=1}^{\infty} r e^{-r}$$
.

5.4 Power Series

Definition

A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$

in which the center a and the coefficients $a_0, a_1, a_2, \dots, a_n, \dots$ are constants.

5.4.1 Expansion of Exponent Function

The power series of the exponent function can be written as

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots$$

The expansion is true for all values of x. In general,

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}.$$

Example (15):

Given

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots + \frac{1}{n!}x^{n} + \dots$$

Write down the first five terms of the expansion of the following functions

- (a) e^{2x}
- (b) e^{x-1}

Example (16):

Write down the first five terms on the expansion of the function, $(1+x)^2 e^{-x}$ in the form of power series.

5.4.2 Expansion of Logarithmic Function

The expansion of logarithmic function can be written as

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5$$
$$-\frac{1}{6}x^6 + \frac{1}{7}x^7 - \dots$$

The series converges for $-1 < x \le 1$. Thus the series $\ln(1+x)$ is valid for $-1 < x \le 1$.

By assuming x with -x, we obtain

$$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - \frac{1}{5}x^5$$
$$-\frac{1}{6}x^6 - \frac{1}{7}x^7 - \dots$$

Thus, this result is true for $-1 < -x \le 1$ or $-1 \le x < 1$.

Example (17):

Write down the first five terms of the expansion of the following functions

(a)
$$ln(1+3x)$$

(b)
$$3\ln(1-2x^2)(1+3x)$$

Example (18):

Find the first four terms of the expansion of the function, $(1+x)^2 \ln(1+2x)^3$.

5.4.3 Expansion of Trigonometric Function

The power series for trigonometric functions can be written as

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

Both series are valid for all values of x.

Example (19):

Given

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

Find the expansion of $\cos(2x)$ and $\cos(3x)$. Hence, by using an appropriate trigonometric identity find the first four terms of the expansion of the following functions:

- (a) $\sin^2(x)$
- (b) $\cos^3(x)$

5.5 Taylor and the Maclaurin Series

Definition 5.9 (TAYLOR AND MACLAURIN SERIES)

If f(x) has a derivatives of all orders at x = a, then we call the series as **Taylor's Series** for f(x) about x = a and is given by

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \frac{(x-a)^3}{3!}f'''(a) + \dots + \frac{(x-a)^r}{r!}f^r(a) + \dots$$

or

$$f(x+a) = f(a) + x f'(a) + \frac{x^2}{2!} f''(a) + \frac{x^3}{3!} f'''(a) + \dots + \frac{x^r}{r!} f^r(a) + \dots$$

In the special case where a = 0, this series becomes the **Maclaurin Series** for f(x) and is given by

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x}{r!}f^r(0) + \dots \quad \diamondsuit$$

Example 20:

Obtain the Taylor series for $f(x) = 3x^2 - 6x + 5$ around the point x = 1.

Ans:
$$2 + 3(x-1)^2$$

Example 21:

Obtain Maclaurin series expansion for the first four terms of e^x and five terms of $\sin x$. Hence, deduct that Maclaurin series for $e^x \sin x$ is given by $x + x^2 + \frac{1}{3}x^3 - \frac{1}{30}x^5 + ...$

Example 22:

Use Taylor's theorem to obtain a series expansion of first five terms for $\cos\left(x + \frac{\pi}{3}\right)$. Hence find $\cos 62^{\circ}$ correct to 4 dcp.

Ans: 0.4695

Example 23:

If $y = \ln \cos x$, show that

$$\frac{d^2y}{dx^2} + 1 + \left(\frac{dy}{dx}\right)^2 = 0$$

Hence, by differentiating the above expression several times, obtain the Maclaurin's series of $y = \ln \cos x$ in the ascending power of x up to the term containing x^4 .

Solution:

Finding Limits with Taylor Series and Maclaurin Series.

Example 24:

Find
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$
.

Ans: 1/2

Example 25:

Evaluate
$$\lim_{x\to 0} \frac{x^2 + 2\cos x - 2}{3x^4}.$$

Ans: 1/36

Evaluating Definite Integrals with Taylor Series and Maclaurin Series.

Example 26:

Use Maclaurin series to approximate the following definite integral.

a)
$$\int_{0}^{1} e^{-x^{2}} dx$$

b)
$$\int_{0}^{1} x \cos(x^{3}) dx$$

Ans: 0.747, 0.440