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5.2.3 Difference method 

 

Let ( )f x  be a function of x and the r-th term of the series 

1

n

r
r

u

 is of the form ( ) ( 1)ru f r f r   , then 

 

     

   

1 1

( ) ( 1)

(1) (0) (2) (1) (3) (2)

(4) (3) ... ( ) ( 1)

(0) ( )

( ) (0).

n n

r
r r

u f r f r

f f f f f f

f f f n f n

f f n

f n f

 

   

     

     

  

 

 

 

To conclude,  

If    1ru f r f r     , then    
1

0 .
n

r

r

u f n f


     

 

Or equivalently 

 

If    1rku f r f r    , then    
1

1
0 .

n

r

r

u f n f
k

     

where k is a constant. 

 

Note: If we fail to express ru  into this form, 

   1f r f r   
, then this method cannot be used. 
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Example 8: 

 

Express the r-th term of the series 

1 2 2 3 3 4 ... ( 1) ...r r           as the difference of two 

functions of r and r – 1. Hence find the sum of the first n 

terms of the series. 

 

Solution: 

 

Step 1: Find the general form of the r-th term: 

 

 

Step 2: Form another sequence  ( )f r   by adding one more 

factor to the end of the general term ur  : 

 

 

Step 3: Find ( 1)f r  : 

 

 

Step 4: Form the difference: 

 
( ) ( 1)f r f r   

 

 

 

Step 5: Find the sum : 
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Tips: 

 

(A) If the general term, ru  , of the series is in "product" form, 

you can add one more factor to the end of the general term  ru  , so 

as to form a sequence  ( )f r   and then apply the difference 

method. 

 

(B) If the general term, ru  , is in "quotient" form, you can 

remove one more factor at the end of the general term  ru   , so as 

to form a sequence  ( )f r   and then apply the difference method. 

 

 

 

Example 9: 

 

By using the difference method, find the sum of the first n 

terms of the series 
1 1 1 1

... .
2 3 3 4 4 5 ( 1)( 2)n n

   
    

 

 

 

Example (10): 

 

Use the difference method; find the sum of the series 

  1

2

2 3

n

r r r  
 . 
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5.3 Test of Convergence 

 

5.3.1 Divergence Test 

If 
1

r
r

a



 converges, then 0lim r

r

a


 . Equivalently, if  

0lim r
r

a


 , or lim r
r

a


does not exist, then the series is 

diverges. 

 

Example (11): 

Show that the series 

2

2
1 5 4n

n

n



 
  diverges. 

 

Example 12: 

Use Divergence Test to determine whether 
1 lnr

r

r




  diverges 

or not. 
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5.3.2 The Integral Test 

 

Suppose f is a continuous, positive, decreasing function on 

 1,  and let  ra f r . Then the series 

1

r

r

a




 is convergent 

if and only if the improper integral  
1

f x dx


  is 

convergent. In other words 

(a) If  
1

f x dx


  is convergent, then 

1

r

r

a




  is 

convergent. 

(b) If  
1

f x dx


  is divergent, then 

1

r

r

a




  is divergent. 

 

 

Note: Use this test when  f x  is easy to integrate. 
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Example 13: 

 

Use the Integral Test to determine whether the following 

series converges or diverges. 
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5.3.3 Ratio Test 

 

Let 
1

r
r

a



 be an infinite series with positive terms and let 

1 .lim
r

r r

a

a
 



  

 

a)  If 0 1  , the series converges. 

b)  If 1 , or     , the series diverges. 

c)  If 1  , the test is inconclusive. 

 
 

Example 14:  
 

Use the Ratio Test to determine whether the following 

series converges or diverges. 
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5.4  Power Series 

 

Definition 

 

A power series about 0x   is a series of the form 

2 3

0 1 2 3

0

   n n

n n

n

a x a a x a x a x a x




       

 

A power series about x a  is a series of the form 

2

0 1 2

0

( )   ( )   ( ) ( )n n

n n

n

a x a a a x a a x a a x a




          

 

in which the center a and the coefficients 

0 1 2,, , , ,na a a a  are constants. 
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5.4.1 Expansion of Exponent Function 

 

The power series of the exponent function can be written as 

 

2 3 41 1 1
1

2! 3! 4!

xe x x x x      

 

The expansion is true for all values of .x  In general, 

0

1

!
.x n

n

e x
n





  

 

Example (15): 

Given 

2 3 41 1 1 1
1

2! 3! 4! !

x ne x x x x x
n

       

Write down the first five terms of the expansion of the 

following functions 

(a) 
2xe  

(b) 
1xe 
 

 

 

Example (16): 

Write down the first five terms on the expansion of the 

function,  
2

1 xx e  in the form of power series. 
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5.4.2 Expansion of Logarithmic Function 

 

The expansion of logarithmic function can be written as 

2 3 4 5

6 7

1 1 1 1
ln(1 x)

2 3 4 5

1 1

6 7

x x x x x

x x

     

  

 

 

The series converges for 1 1x   . Thus the series 

 ln 1 x   is valid for 1 1x   . 

By assuming x  with x , we obtain 

2 3 4 5

6 7

1 1 1 1
ln(1 x)

2 3 4 5

1 1

6 7

x x x x x

x x

      

  

 

Thus, this result is true for 1 1x     or 1 1.x    

 

 

 

 

 

 

 

 



 19 

Example (17): 

 

Write down the first five terms of the expansion of the 

following functions 

(a)  ln 1 3x  

(b)   23ln 1 2 1 3x x   

 

 

 

 

 

 

 

Example (18): 

 

Find the first four terms of the expansion of the function, 

   
2 3

1 ln 1 2 .x x   
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5.4.3 Expansion of Trigonometric Function 

 

The power series for trigonometric functions can be written 

as 
3 5 7 9

sin      
3! 5! 7! 9!

x x x x
x x      

2 4 6 8

cos     1 
2! 4! 6! 8!

x x x x
x       

 

Both series are valid for all values of .x  

 

Example (19): 

 

Given 
2 4 6 8

cos     1 
2! 4! 6! 8!

x x x x
x       

Find the expansion of  cos 2x  and  cos 3x . Hence, by 

using an appropriate trigonometric identity find the first 

four terms of the expansion of the following functions: 

(a)  2sin x  

(b)  3cos x  
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5.5  Taylor and the Maclaurin Series 

 

 

Example 20: 

Obtain the Taylor series for 2( ) 3 6 5f x x x    around the point 

1.x   
Ans: 2 + 3(x-1)2 

Example 21:  
Obtain Maclaurin series expansion for the first four terms of 

xe and five terms of sin x . Hence, deduct that Maclaurin series for 

sinxe x  is given by 2 3 51 1
...

3 30
x x x x     

 

Example 22: 

Use Taylor’s theorem to obtain a series expansion of first five 

terms for cos
3

x
 

 
 

. Hence find 0cos62 correct to 4 dcp. 

 

Ans: 0.4695 

 

 

 



 22 

Example 23: 

If lncosy x , show that 
22

2
1 0

d y dy

dx dx

 
   

 
 

Hence, by differentiating the above expression several times, 

obtain the Maclaurin’s series of lncosy x  in the ascending 

power of x up to the term containing 4x . 

 

Solution: 
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Finding Limits with Taylor Series and Maclaurin Series. 

 

Example 24: 

Find 
20

1
lim

x

x

e x

x

 
. 

Ans: ½ 

 

 

Example 25: 

Evaluate 
2

40

2cos 2
lim

3x

x x

x

 
. 

Ans: 1/36 

 

 

 

Evaluating Definite Integrals with Taylor Series and Maclaurin 

Series. 

 

Example 26: 

 

Use Maclaurin series to approximate the following definite 

integral. 

a) 
21

0

xe dx
  

 

b) 
1

3

0

cos( )x x dx  

 
Ans: 0.747, 0.440 

 
 

 




