Summary for chapter 1: VECTORS

Basic Concept	Dot Product	Cross Product
<u>Magnitude</u>	<u>Definition</u>	<u>Definition</u>
$\left \mathbf{v} \right = \sqrt{a^2 + b^2 + c^2}$	$\mathbf{u} \cdot \mathbf{v} = \langle d, e, f \rangle \cdot \langle a, b, c \rangle$ $= d(a) + e(b) + f(c)$	$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{d} & \mathbf{e} & \mathbf{f} \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \end{vmatrix}$
<u>Unit Vector</u>	Angle Between 2 Vectors	$\begin{vmatrix} a & b & c \\ = i(ec - bf) - j(dc - af) + k(db - ae) \end{vmatrix}$
$\hat{\mathbf{u}}_{\mathbf{v}} = \frac{\mathbf{v}}{ \mathbf{v} }$	$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} \mathbf{v} }\right)$	Area of Parallelogram/Triangle
	Types of Angle	Area of parallelogram = $ \mathbf{u} \times \mathbf{v} $ Area of triangle = $\frac{1}{2} \mathbf{u} \times \mathbf{v} $
	θ is acute angle $\Leftrightarrow \mathbf{u} \cdot \mathbf{v} > 0$ θ is obtuse angle $\Leftrightarrow \mathbf{u} \cdot \mathbf{v} < 0$	Note Note
	$\theta = 90^{\circ} \Leftrightarrow \mathbf{u} \cdot \mathbf{v} = 0$ $\Leftrightarrow \mathbf{u} \text{ and } \mathbf{v} \text{ are orthogonal}$ $\Leftrightarrow \mathbf{u} \text{ is perpendicular to } \mathbf{v}$	\mathbf{u} and \mathbf{v} are parallel $\Leftrightarrow \mathbf{u} \times \mathbf{v} = 0$

	Line	Plane
	1. vector form $ \langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle $ Eg: $\langle x, y, z \rangle = \langle 2, -5, 4 \rangle + t \langle 3, -8, -1 \rangle $	$ax + by + cy = d \text{ with}$ $d = ax_0 + by_0 + cz_0$
Equation	2. parametric form $x = x_0 + at, \ y = y_0 + bt, \ z = z_0 + ct$ Eg: $x = 5 + 2t, \ y = -2 + 2t, \ z = 3 - t$ 3. symmetrical form $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$ Eg: $\frac{x + 1}{3} = \frac{y - 3}{4} = \frac{z + 4}{2}$ Where: point on the line $= (x_0, y_0, z_0)$ $\mathbf{v} = < a, b, c >$	where: point on the plane = (x_0, y_0, z_0) normal vector, $\mathbf{N} = \langle a, b, c \rangle$
Angle	1. between 2 lines $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} \mathbf{v} } \text{ where}$ $\mathbf{u} : \text{ vector parallel to line 1}$ $\mathbf{v} : \text{ vector parallel to line 2}$	1. between 2 planes $\cos \theta = \frac{N_1 \cdot N_2}{ N_1 N_2 } \text{ where}$ $N_I = \text{normal vector to plane 1}$ $N_2 = \text{normal vector to plane 2}$ 2. between a line and a plane $\sin \theta = \frac{V \cdot N}{ V N } \text{ where}$ $V = \text{vector parallel to line}$ $N = \text{normal vector to plane}$

Intersection

between 2 lines

$$l_1: x = x_1 + at$$
 $l_2: x = x_2 + ds$
 $y = y_1 + bt$ $y = y_2 + es$
 $z = z_1 + ct$ $z = z_2 + fs$

$$\mathbf{v}_1 = \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$$
 $\mathbf{v}_2 = \langle d, e, f \rangle$

	If YES	If NOT
1. Parallel	$v_1 = \lambda v_2$	$v_1 \neq \lambda v_2$
	Stop (conclude)	Move to 2
2. Intersect	$x_1 + at = x_2 + ds$ $y_1 + bt = y_2 + es$ $z_1 + ct = z_2 + fs$	The values of s and t not satisfy one of the three equation
	Find/get the value of s and t and make sure s and t satisfies all three equation	Move to 3
	Find/get the point of intersection (x, y, z)	
3. Skew	Stop (conclude)	

between 2 planes

To obtain the equation of a line of the intersection of 2 planes, we need

- 1. a vector parallel to the line $\Rightarrow \mathbf{N}_1 \times \mathbf{N}_2$
- 2. a point (x_0, y_0, z_0) on the line \Rightarrow can be chosen by solving the equation of plane 1 and plane 2

1. from a point to a line

Shortest distance

$$d = \frac{\left| \overline{\mathbf{v}} \times \overline{\mathbf{P}} \overline{\mathbf{Q}} \right|}{\left| \overline{\mathbf{v}} \right|} \text{ where }$$

V = vector parallel to line

P = point on the line

Q = point **to** the line

2. between 2 skewed lines

$$D = \frac{\left| \overline{\mathbf{N}} \cdot \overline{P} \overline{Q} \right|}{\left| \overline{\mathbf{N}} \right|} \text{ where}$$

 $N = U \times V$

U = vector parallel to line 1

V = vector parallel to line 2

P = point on line 1

Q = point on line 2

1. from a point to a plane

$$D = \frac{|ax_1 + by_1 + cz_1 - d|}{\left|\sqrt{a^2 + b^2 + c^2}\right|} \text{ where}$$

 $\langle a,b,c \rangle$ = normal vector to plane (x_I,y_I,z_I) = point **to** the plane

2. between 2 parallel planes

$$D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$