UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1693 ENGINEERING MATHEMATICS I TUTORIAL 8: POLAR & COMPLEX NUMBER

2. Find the Cartesian equation for each of the following parametric equations.

(c) $x=2-5\cos\theta$, $y=1-3\sin\theta$. (d) $x=3t^2$, y=6t.

(b) $x = 3 + 2t^2$, y = -4t.

(b) x = 2 - m, $y = m^2 + 4$.

(d) $x = 2 + 3\cos\theta$, $y = 3\sin\theta - 1$.

POLAR

1. Sketch the following curves.

(a) $x = 2t^2$, y = 4t.

(a) $x = 4t, \quad y = \frac{4}{t}.$

3. Plot the following points.

(c) $x = 3\cos\theta$, $y = 3\sin\theta$.

	(a) $(3, 150^{\circ})$.	(b)	$(4, \frac{1}{2}\pi).$	(c)	$(1, -120^{\circ}).$
	(d) $(2, -\frac{7}{6}\pi)$.	(e)	$(2, \pi).$	(f)	(1, 2).
4.	Express the points in Quest	ion 3	in Cartesian coordinates.		
5.	xpress the following equations in polar equations.				
	(a) $x + y = 1$.	(b)	$xy = a^2$.	(c)	x = 4.
	(d) $y = 2$.	(e)	$x^2 + y^2 = 2x.$	(f)	$x^2 = y.$
6.	Find the points of intersecti	ntersection between each of the following pairs of curves.			
	(a) $r = 2\cos 2\theta$ and $r =$	$2\sin$	θ . (b) $r = 1$ and	r^2 =	$=2\cos 2\theta.$
	(c) $r = a$ and $r = 2a \sin a$	θ .	(d) $r = 1 + co$	s θ a	and $r = 3\cos\theta$.
7.	By plotting the points (r, θ) , for θ between 0 to 2π , sketch the graphs of the following polar equations.				
	(a) $r = 3$.	(b)	$r = \frac{1}{3}\pi.$	(c)	$r = 1 - \cos \theta$.
	(d) $r = 2 + \cos \theta$.	(e)	$r = 2\sin\theta$.	(f)	$r = 3\sin 2\theta$.
8.	8. Test the symmetries of the following equations. Hence, sketch the graphs.				
	(a) $r = 2 + 3\cos\theta$.	(b)	$r = 3\cos 2\theta$.	(c)	$r = 1 - \sin \theta$.
	(d) $r = 2 - 3\sin\theta$.	(e)	$r = a \sin 3\theta$.	(f)	$r^2 = 2a^2 \cos 2\theta.$

COMPLEX NUMBER

Find the complex numbers w and v such that

$$z^2 - 4 - 2iz = (z + iv)^2 - wzi,$$

for all z.

10. If z = x + iy, find the real values of x and y that satisfy the equation

$$\frac{2z}{1+i} - \frac{2z}{i} = \frac{5}{2+i}.$$

11. Solve the following equations and sketch the roots on an Argand diagram.

(a)
$$z^3 + 8i = 0$$
.

(b)
$$z^6 = -1$$

(b)
$$z^6 = -1$$
. (c) $z^4 + 81 = 0$.

(d)
$$9z^2 + 18 = 0$$
.

12. Prove that the modulus of $2 + \cos \theta + i \sin \theta$ is $(5 + 4 \cos \theta)^{1/2}$. Hence show that the modulus

$$\frac{2 + \cos \theta + i \sin \theta}{2 + \cos \theta - i \sin \theta}$$

is unity.

13. Find all the roots of the following equations.

(a)
$$z^2 - 4iz - 4 - 2i = 0$$
.

(b)
$$3z^2 - (2+11i)z + 3 - 5i = 0$$
.

(c)
$$z^2 + (1-i)z + 3 - 5i = 4 - 7i$$
. (d) $z^2 + (1+3i)z + 2 = 0$.

(d)
$$z^2 + (1+3i)z + 2 = 0$$

14. Without using calculator, find the complex number w such that $w^2 = -2 + 2\sqrt{3}i$. Hence, solve

$$z^{2} + (8 - 4\sqrt{3}i)z + (12 - 24\sqrt{3}i) = 0.$$

15. Find in the form of $r \operatorname{cis} \theta$ the complex numbers z that satisfy the equation

$$\frac{1+z^2}{1-z^2} = i.$$

- 16. Find the three roots of the equation $z^3=1$. Show that if α and β are the two roots with non-zero imaginary parts, then $\alpha^2 = \beta$ and $\beta^2 = \alpha$.
- 17. Find the solutions of the equation

$$z^4 + 16z^2 + 100 = 0,$$

in the form a + i b.

18. Find the three roots of the equation

$$8x^3 = (2 - x)^3,$$

expressing each in the form a + ib.

- 19. Write down the solutions of the equation $w^4 = 16$. Hence deduce that the solutions of the equations $(z+2)^4 = 16(z-1)^4$
- 20. A complex number z is such that $z + z^{-1} = \sqrt{3}$. Find the value of $z^4 + z^{-4}$ and determine the set of values for n so that $z^n + z^{-n} = 0$.
- 21. Use De Moivre's Theorem to write the following complex numbers in the form of a + ib.
 - (a) $(-1+i)^{29}$.
- (b) $(-1-i)^{12}$.
- (c) $(1-i)^{17}$.

- (d) $(2+2i)^{36}$.
- (e) $(\sqrt{3}-i)^{13}$.
- (f) $(-\sqrt{3}+i)^{15}$.
- 22. Find all the roots of each of the following complex numbers.
 - (a) $(2\sqrt{3}-2i)^{\frac{1}{2}}$.
- (b) $i^{\frac{1}{3}}$.
- (c) $(-4+4i)^{\frac{1}{5}}$.
- (d) $256^{\frac{1}{4}}$.
- 23. Find the roots following equations in the form $r \operatorname{cis} \theta$ and sketch its on an Argand diagram.
 - (a) $z^2 \sqrt{5}i = 0$. (b) $z^3 + 8i = 0$. (c) $z^5 + 32 = 0$.

- (d) $z^6 + 1 = \sqrt{3}i$.
- 24. Express $\frac{1+i\tan\theta}{1-i\tan\theta}$ in terms $r(\cos\theta+i\sin\theta)$. Hence, obtain the cube roots of

$$\frac{1+i\sqrt{3}}{1-i\sqrt{3}}.$$

25. By using De Moivre's Theorem, prove that

$$\sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta.$$

Hence, find all the roots of the equation

$$16x^5 - 20x^3 + 5x = 1$$
.

26. By using De Moivre's Theorem prove that

$$\cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1$$
.

Hence, find all the roots of the equation

$$64x^6 - 96x^4 + 36x^2 - 3 = 0$$

- 27. If $x + iy = \cos(u + iv)$, where x, y, u, v are real, prove that
 - (a) $(1+x)^2 + y^2 = (\cosh v + \cos u)^2$.
- (b) $(1-x)^2 + y^2 = (\cosh v \cos u)^2$.
- 28. Express $\sin ix$ and $\cos ix$ in terms of $\sinh x$ and $\cosh x$ respectively. If $x + iy = \tan(u + iv)$, prove that
 - (a) $\coth 2v = \frac{x^2 + y^2 + 1}{2u}$.

(b) $\cot 2u = \frac{1 - x^2 - y^2}{2x}$.