SKEE 1023 CIRCUIT THEORY SECTION 13

TUTORIAL 7: AC CIRCUITS

1. Problem 9.5

Given $v_1 = 20 \sin(\omega t + 60^\circ)$ and $v_2 = 60 \cos(\omega t - 10^\circ)$, determine the phase angle between the two sinusoids and which one lags the other

2. Problem 9.17

Two voltages v_1 and v_2 appear in series so that their sum is $v = v_1 + v_2$. If $v_1 = 10\cos(50t - \pi/3)$ V and $v_2 = 12\cos(50t + 30^\circ)$ V. Find v.

3. Problem 10.3

Determine v_o

4. Problem 10.15

Solve for the current I using nodal analysis.

5. Problem 10.32

Determine V_o and I_o mesh analysis.

6. Problem 10.48

Find i_o using superposition.

7. Problem 10.64

Find the Norton equivalent circuit at terminals *a-b*.

8. Problem 9.90 (Assignment group G)

An industrial coil is modeled as a series combination of an inductance L and resistance R. Since an ac voltmeter measures only the magnitude of a sinusoid, the following measurements are taken at 60 Hz when the circuit operates in the steady state:

$$|V_s| = 145V, \quad |V_1| = 50V, \quad |V_o| = 110V$$

Use these measurements to determine the values of L and R.

9. Problem 10.75 (Assignment group H)

Find the closed-loop gain and phase shift of the output voltage with respect to the input voltage if $C_1 = C_2 = 1$ nF, $R_1 = R_2 = 100$ k Ω , $R_3 = 20$ k Ω , $R_4 = 40$ k Ω , and $\omega = 2000$ rad/s.

