SKEE 1023 CIRCUIT THEORY

SECTION 13

TUTORIAL 1: BASIC LAWS

1. **Problem 2.23**

In the circuit shown in Figure 2.87, determine v_x and the power absorbed by the 12- Ω resistor.

2. **Problem 2.24**

For the circuit in Figure 2.86, find V_o / V_s in terms of α , R_1 , R_2 , R_3 , and R_4 . If $R_1 = R_2 = R_3 = R_4$, what value of α will produce $|V_o / V_s| = 10$?

3. **Problem 2.33**

Obtain *v* and *i* in the circuit in Figure 2.97.

4. Problem 2.41

If $R_{\rm eq} = 50 \Omega$ in the circuit in Figure 2.105, find R.

4. **Problem 2.51**

Obtain the equivalent resistance at the terminals *a-b* for each of the circuits in Figure 2.115

Figure 2.115

5. **Problem 2.56**

Determine *V* in the circuit of Figure 2.120.

6. **Problem 2.67**

- (a) Obtain the voltage v_o in the circuit of Figure 2.127.
- (b) Determine the voltage v_0 measured when a voltmeter with 6-k Ω internal resistance is connected as shown in Fig. 2.127.
- (c) The finite resistance of the meter introduces an error into the measurement. Calculate the percent error as

$$\left| \frac{v_o - v'_o}{v_o} \right| \times 100\%.$$

(d) Find the percent error if the internal resistance were 36 k Ω .

Figure 2.127