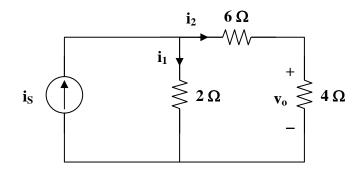
CHAPTER 4

P.P.4.1



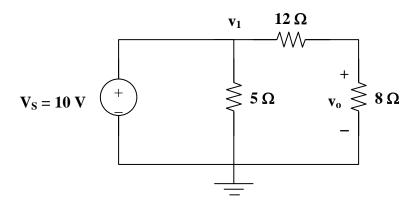
By current division,
$$i_2 = \frac{2}{2+6+4}i_s = \frac{1}{6}i_s$$

 $v_0 = 4i_2 = \frac{2}{3}i_s$

When
$$i_s = 15A$$
, $v_0 = \frac{2}{3}(15) = \underline{10V}$

When
$$i_s = 30A$$
, $v_0 = \frac{2}{3}(30) = \underline{20V}$

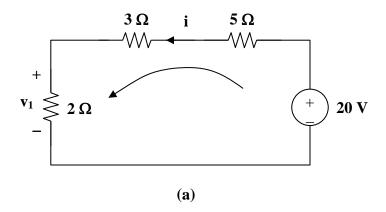
P.P.4.2

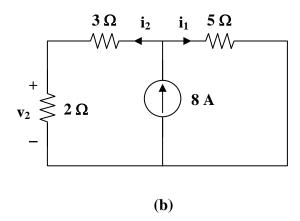


Let $v_0 = 1$. Then $i = \frac{1}{8}$ and $v_1 = \frac{1}{8}(12 + 8) = 2.5$ giving $v_s = 2.5V$.

If
$$v_s = 10V$$
, then $v_0 = \underline{4V}$

P.P.4.3 Let $v_0 = v_1 + v_2$, where v_1 and v_2 are contributions to the 20-V and 8-A sources respectively.





To get v_1 , consider the curcuit in Fig. (a).

$$(2+3+5)i = 20$$
 $i = 20/(10) = 2A$
 $v_1 = 2i = 4V$

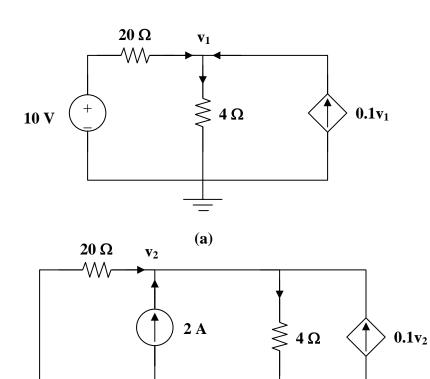
To get v_2 , consider the circuit in Fig. (b).

$$i_1 = i_2 = 4A, \ v_2 = 2i_2 = 8V$$

Thus,

$$v = v_1 + v_2 = 4 + 8 = \underline{12V}$$

P.P.4.4 Let $v_x = v_1 + v_2$, where v_1 and v_2 are due to the 10-V and 2-A sources respectively.



(b)

To obtain v_1 , consider Fig. (a).

$$0.1v_1 + \frac{10 - v_1}{20} = \frac{v_1}{4} \longrightarrow v_1 = 2.5$$

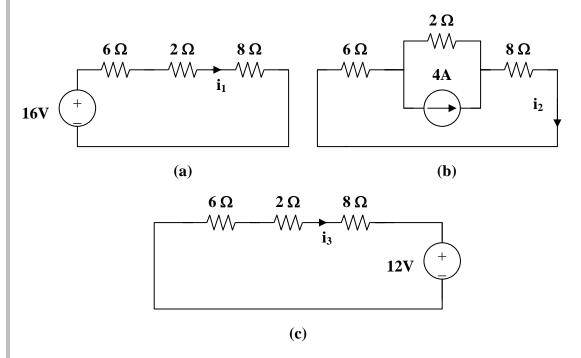
For v₂, consider Fig. (b).

$$2 + 0.1v_2 + \frac{0 - v_2}{20} = \frac{v_2}{4} \longrightarrow v_2 = 10$$

$$v_x = v_1 + v_2 = \underline{12.5V}$$

P.P.4.5 Let $i = i_1 + i_2 + i_3$

where i₁, i₂, and i₃ are contributions due to the 16-V, 4-A, and 12-V sources respectively.



For
$$i_1$$
, consider Fig. (a), $i_1 = \frac{16}{6+2+8} = 1A$

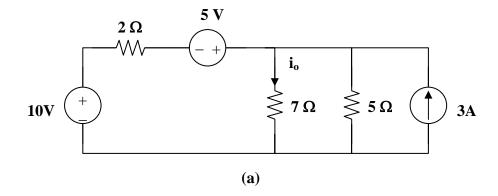
For i₂, consider Fig. (b). By current division, $i_2 = \frac{2}{2+14}(4) = 0.5$

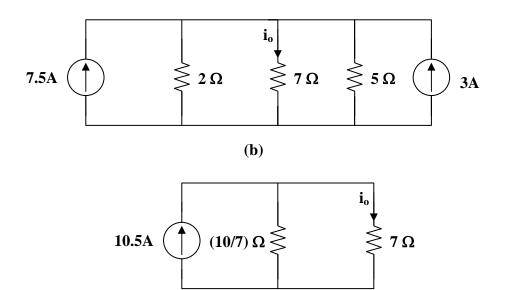
For i₃, consider Fig. (c), i₃ =
$$\frac{-12}{16}$$
 = -0.75A

Thus,
$$i = i_1 + i_2 + i_3 = 1 + 0.5 - 0.75 =$$
750mA

P.P.4.6 Combining the 6-Ω and 3-Ω resistors in parallel gives $6||3 = \frac{6x3}{9} = 2Ω$.

Adding the 1- Ω and 4- Ω resistors in series gives $1+4=5\Omega$. Transforming the left current source in parallel with the 2- Ω resistor gives the equivalent circuit as shown in Fig. (a).





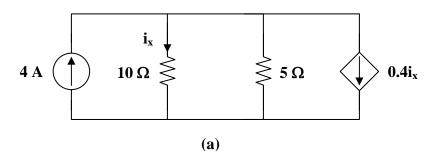
Adding the 10-V and 5-V voltage sources gives a 15-V voltage source. Transforming the 15-V voltage source in series with the 2- Ω resistor gives the equivalent circuit in Fig. (b). Combining the two current sources and the 2- Ω and 5- Ω resistors leads to the circuit in Fig. (c). Using circuit division,

(c)

$$i_o = \frac{\frac{10}{7}}{\frac{10}{7} + 7} (10.5) = \mathbf{\underline{1.78 A}}$$

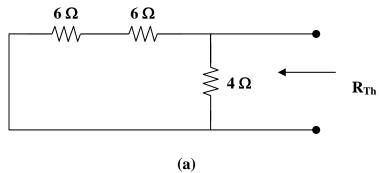
P.P.4.7 We transform the dependent voltage source as shown in Fig. (a). We combine the two current sources in Fig. (a) to obtain Fig. (b). By the current division principle,

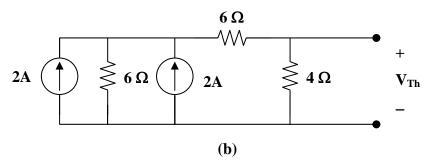
$$i_x = \frac{5}{15} (4 - 0.4i_x) \longrightarrow i_x = \underline{1.176A}$$



 $4 - 0.4i_x A$ 10Ω 5Ω (b)

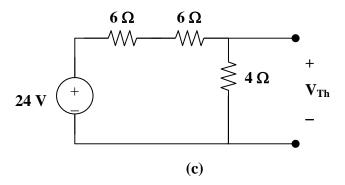
P.P.4.8 To find R_{Th} , consider the circuit in Fig. (a).





$$R_{Th} = (6+6) \|4 = \frac{12x4}{18} = \underline{3\Omega}$$

To find V_{Th} , we use source transformations as shown in Fig. (b) and (c).

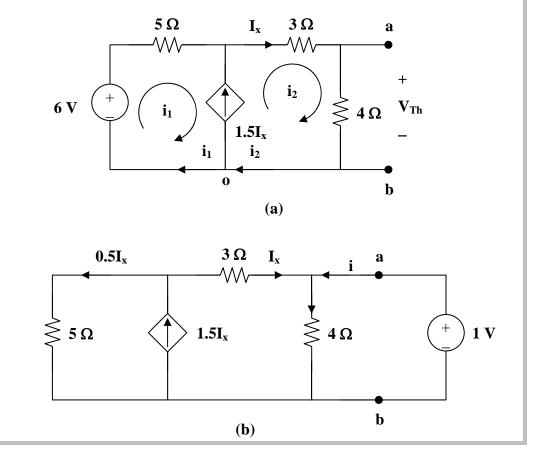


Using current division in Fig. (c),

$$V_{Th} = \frac{4}{4+12}(24) = \underline{6V}$$

$$i = \frac{V_{Th}}{R_{Th} + 1} = \frac{6}{3 + 1} = \underline{1.5A}$$

 $\textbf{P.P.4.9} \quad \text{To find V_{Th}, consider the circuit in Fig. (a)}.$



$$I_x = i_2$$

 $i_2 - i_1 = 1.5I_x = 1.5i_2 \longrightarrow i_2 = -2i_1$ (1)

For the supermesh,
$$-6 + 5i_1 + 7i_2 = 0$$
 (2)

From (1) and (2), $i_2 = 4/(3)A$

$$V_{Th} = 4i_2 = 5.333V$$

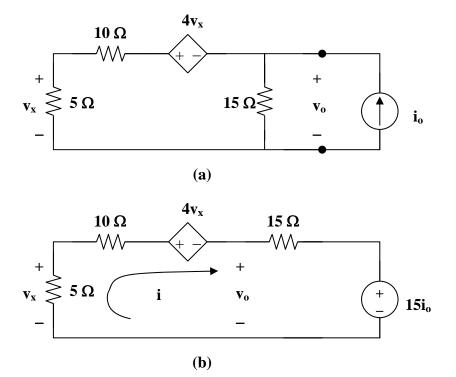
To find R_{Th}, consider the circuit in Fig. (b). Applying KVL around the outer loop,

$$5(0.5I_x) - 1 - 3I_x = 0$$
 $I_x = -2$

$$i = \frac{1}{4} - I_x = 2.25$$

$$R_{Th} = \frac{1}{i} = \frac{1}{2.25} = \underline{444.4 \text{ m}\Omega}$$

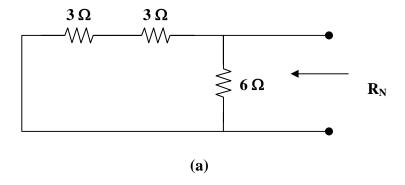
P.P.4.10 Since there are no independent sources, $V_{Th} = \underline{0}$

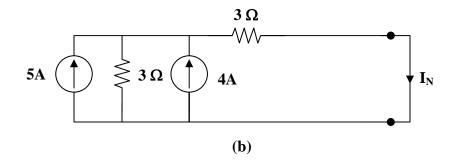


To find R_{Th} , consider Fig.(a). Using source transformation, the circuit is transformed to that in Fig. (b). Applying KVL,).

But
$$v_x = -5i$$
. Hence, $30i - 20i + 15i_o = 0$ \longrightarrow $10i = -15i_o$ $v_o = (15i + 15i_o) = 15(-1.5i_o + i_o) = -7.5i_o$ $R_{Th} = v_o/(i_o) = \underline{-7.5\Omega}$

P.P.4.11

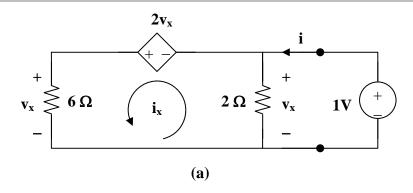


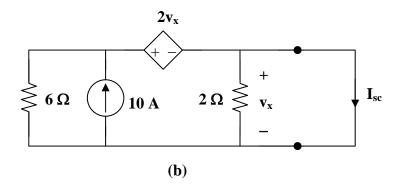


From Fig. (a),
$$R_N = (3+3) \| 6 = \underline{3 \Omega}$$

From Fig. (b),
$$I_N = \frac{1}{2}(5+4) = \underline{4.5A}$$

P.P.4.12

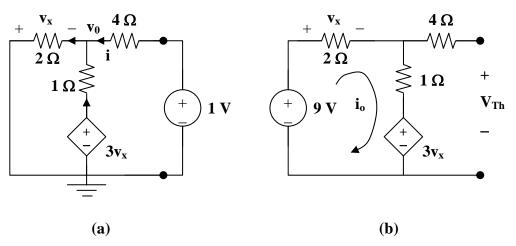




To get R_N consider the circuit in Fig. (a). Applying KVL, $6i_x - 2v_x - 1 = 0$ But $v_x = 1$, $6i_x = 3 \longrightarrow i_x = 0.5$ $i = i_x + \frac{v_x}{2} = 0.5 + 0.5 = 1$ $R_N = R_{Th} = \frac{1}{i} = \underline{1\Omega}$

To find I_N , consider the circuit in Fig. (b). Because the 2Ω resistor is shorted, $v_x=0$ and the dependent source is inactive. Hence, $I_N=i_{sc}=\underline{\textbf{10A}}$.

P.P.4.13 We first need to find R_{Th} and V_{Th} . To find R_{Th} , we consider the circuit in Fig. (a).



Applying KCL at the top node gives

$$\frac{1 - v_o}{4} + \frac{3v_x - v_o}{1} = \frac{v_o}{2}$$

But $v_x = -v_o$. Hence

$$\frac{1 - v_o}{4} - 4v_o = \frac{v_o}{2} \longrightarrow v_o = 1/(19)$$

$$i = \frac{1 - v_o}{4} = \frac{1 - \frac{1}{19}}{4} = \frac{9}{38}$$

$$R_{Th} = 1/i = 38/(9) = 4.222\Omega$$

To find V_{Th} , consider the circuit in Fig. (b),

$$-9 + 2i_0 + i_0 + 3v_x = 0$$

But $v_x = 2i_o$. Hence,

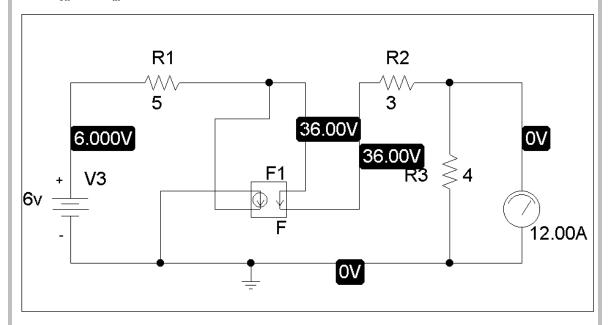
$$9 = 3i_o + 6i_o = 9i_o \longrightarrow i_o = 1A$$

$$V_{Th} = 9 - 2i_o = 7V$$

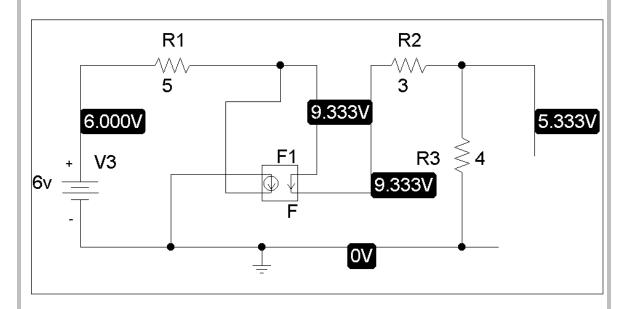
$$R_L=R_{Th}=\underline{\textbf{4.222}\Omega}$$

$$P_{\text{max}} = \frac{v_{\text{Th}}^2}{4R_L} = \frac{49}{4(4.222)} = \underline{2.901W}$$

P.P.4.14 We will use PSpice to find V_{oc} and I_{sc} which then can be used to find V_{Th} and R_{th} .

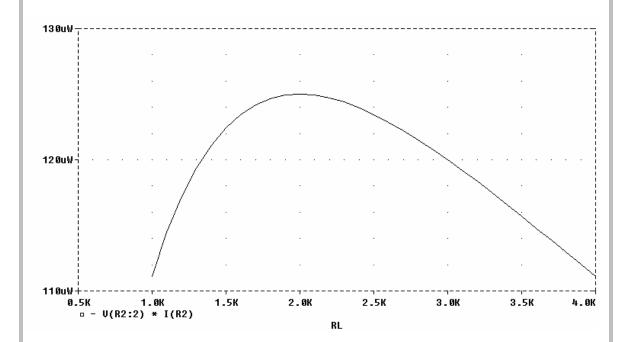


Clearly $I_{sc} = 12 A$

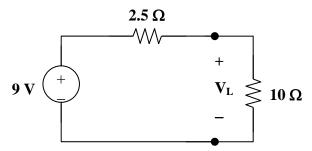


Clearly $V_{Th} = I_{oc} = \underline{\textbf{5.333 volts}}$. $R_{Th} = Voc/Isc = 5.333/12 = \underline{\textbf{444.4 m-ohms}}$.

P.P.4.15 The schematic is the same as that in Fig. 4.56 except that the 1-k Ω resistor is replaced by 2-k Ω resistor. The plot of the power absorbed by R_L is shown in the figure below. From the plot, it is clear that the maximum power occurs when $R_L = 2k\Omega$ and it is $\underline{125\mu W}$.



P.P.4.16
$$V_{Th} = 9V$$
, $R_{Th} = (v_{oc} - V_L) \frac{R_L}{V_L} = (9-1) \frac{20}{8} = 2.5\Omega$



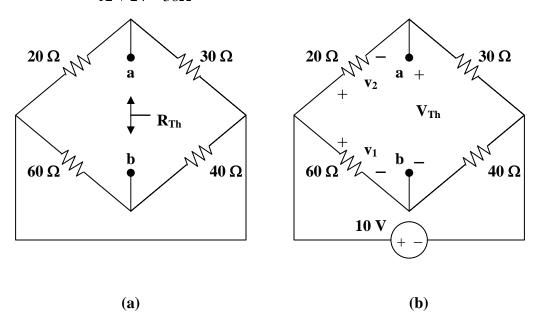
$$V_{L} = \frac{10}{10 + 2.5}(9) = \underline{7.2V}$$

P.P.4.17
$$R_1 = R_3 = 1k\Omega, R_2 = 3.2k\Omega$$

 $R_x = \frac{R_3}{R_1}R_2 = R_2 = \underline{3.2k\Omega}$

P.P.4.18 We first find R_{Th} and V_{Th} . To get R_{Th} , consider the circuit in Fig. (a).

$$R_{Th} = 20 ||30 + 60||40 = \frac{20 \times 30}{50} + \frac{60 \times 40}{100}$$
$$= 12 + 24 = 36\Omega$$



To find V_{Th} , we use Fig. (b). Using voltage division,

$$v_1 = \frac{60}{100}(16) = 9.6, \quad v_2 = \frac{20}{50}(16) = 6.4$$

But
$$-v_1 + v_2 + v_{Th} = 0$$
 $v_{Th} = v_1 - v_2 = 9.6 - 6.4 = 32V$

$$I_G = \frac{V_{Th}}{R_{Th} + R_m} = \frac{3.2}{3.6 + 1.4} = \underline{64mA}$$