
11/1/2011

1

The Conditional Operator

• Can use to create short if/else statements

• Format: expr ? expr : expr;

x<0 ? y=10 : z=20;

First Expression:
Expression to be
tested

2nd Expression:
Executes if first
expression is true

3rd Expression:
Executes if the first
expression is false

The Conditional Operator

• The value of a conditional expression is

– The value of the second expression if the first

expression is true

– The value of the third expression if the first

expression is false

• Parentheses () may be needed in an

expression due to precedence of conditional

operator

11/1/2011

2

The Conditional Operator

• Condition operator vs if/else statements

(x<0)?(y=10):(z=20);

if (x<0)

y=10;

else

z=20;

a=x>100?0:1;

if (x>100)

a=0;

else

a=1;

cout<<“Your grade is “

<< ((score<60)? “FAIL”:

“Pass”);

if (score<60)

cout<<“Your grade is FAIL”;

else

cout<<“Your grade is PASS”;

11/1/2011

3

• Rewrite the following

if/else statements as

conditional expressions

if (x>y)

z = 1;

else

z = 20;

if (hours> 40)

wages *= 1.5;

else

wages *= 1;

if (result >= 0)

cout «"The result is +ve";

else

cout «"The result is -ve";

• Rewrite the following

conditional expressions as

if/else statements

j = k > 90 ? 57 : 12;

total += count == 1 ? sales :

count * sales;

cout « (((num % 2) == 0) ?

"Even\n" : "Odd\n");

In-Class Exercise

The switch Statement

• Used to select among statements from several

alternatives

• In some cases, can be used instead of

if/else if statements

11/1/2011

4

switch statement format

switch (expression) //integer

{

case exp1: statement1;break;

case exp2: statement2;break;

...

case expn: statementn;break;

default: statementn+1;

}

11/1/2011

5

switch statement requirements

1) expression must be an integer variable

or an expression that evaluates to an integer

value

2) exp1 through expn must be constant

integer expressions or literals, and must be

unique in the switch statement

3) default is optional but recommended

switch statement – how it works

1) expression is evaluated

2) The value of expression is compared against

exp1 through expn.

3) If expression matches value expi, the

program branches to the statement following

expi and continues to the end of the switch

4) If no matching value is found, the program

branches to the statement after default:

11/1/2011

6

break statement

• Used to exit a switch statement

• If it is left out, the program "falls through" the

remaining statements in the switch

statement

11/1/2011

7

switch(score/10)

{ case 0:

case 1:

case 2:

case 3:

case 4:

case 5:

grade = 'F’; break;

case 6:

grade = 'D'; break;

case 7:

grade = 'C'; break;

case 8:

grade = 'D'; break;

case 9:

case 10:

grade = 'A'; break;

default:

cout<<"Invalid grade"<<endl;

}

11/1/2011

8

In-Class Exercise
• Suppose the input is 6. What is the value of a after

the following C++ code executes?
cin>>a;

if(a>0)

switch(a)

{ case 1: a=a+3;

case 3: a++;

break;

case 6: a+=6;

case 8: a*=8;

break;

default: a--;

}

else

a+=2;

Menus

• Menu-driven program: program execution

controlled by user selecting from a list of

actions

• Menu: list of choices on the screen

• Menus can be implemented using if/else

if statements

11/1/2011

9

Menu-driven program organization

• Display list of numbered or lettered choices for

actions

• Prompt user to make selection

• Test user selection in expression

– if a match, then execute code for action

– if not, then go on to next expression

Using switch with a menu

• switch statement is a natural choice for

menu-driven program:

– display the menu

– then, get the user's menu selection

– use user input as expression in switch

statement

– use menu choices as expr in case statements

11/1/2011

10

More About Variable Definitions

and Scope

• Scope of a variable is the block in which it is

defined, from the point of definition to the

end of the block

• Usually defined at beginning of function

• May be defined close to first use

11/1/2011

11

Still More About Variable

Definitions and Scope

• Variables defined inside { } have local or

block scope

• When inside a block within another block,

can define variables with the same name as

in the outer block.

–When in inner block, outer definition is not

available

– Not a good idea

#include <iostream>

using namespace std;

int main()

{ int a = 4, b=5;

cout<<a;

{ int b = 9;

cout<<b<<a;

}

cout<<b;

system("pause");

return 0;}

11/1/2011

12

• What will the following program display if user enter test1 40 and test2

30?

if (sum>60) {

int bonus=10;

test1+=bonus; test2+=bonus;

int sum=test1+test2;

cout<<"Test 1 with bonus:“

<<test1<<endl;

cout<<"Test 2 with bonus:“

<<test2<<endl;

cout<<"Sum with bonus:“

<<sum<<endl;

}

cout<<"Test 1 : “

<<test1<<endl;

cout<<"Test 2 : “

<<test2<<endl;

cout<<"Sum : "<<sum<<endl;

return 0;

}

int main ()

{

int test1;

cout<<"Enter Test 1 score: ";

cin>>test1;

int test2;

cout<<"Enter Test 2 score: ";

cin>>test2;

int sum=test1+test2;

In-Class Exercise

11/1/2011

13

In-Class Exercise

• Do Lab 7, Exercise 1, No. 14 (pg. 89)

• Do Lab 7, Exercise 1, No. 15 (pg. 89)

• Do Lab 7, Exercise 1, No. 19 (pg. 95)

• Do Lab 7, Exercise 2, No. 3 (iii), (iv) (pg 99)

• Do Lab 7, Exercise 2, No. 4 (pg.100)

In- Class Exercise

• Do Lab 7, Exercise 3, No. 4 (pg. 106)

• Do Lab 7, Exercise 3, No. 3 (pg. 103-105)

