
Infinite Sequences

Defn: An infinite sequence anl q  is a function whose domain is the set of positive
integers. 
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Defn: We say the sequence anl q  converges to L if lim
n na
→ ∞

= L.

Special facts about determining if a sequence converges:
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2) For a rational expression (the quotient of two polynomials p and q)

a) if the degree of the numerator is greater than the degree of the denominator, lim
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b) if the degree of the numerator is the same as the degree of the denominator, the
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Infinite Series

Defn: Let anl q  be an infinite sequence. Then an expression of the form

a a a a an
n=

∞

∑ = + + + +
1

1 2 3 4 ... is an infinite series.

Each infinite series has a sequence Snl q  called the sequence of partial sums associated
with it.

Defn: For the series a a a a an
n=

∞

∑ = + + + +
1

1 2 3 4 ..., the sequence of partial sums Snl q
associated with it is the sequence in which for each n, Sn  is the sum of the first n terms of
the series; that is, S a a a an n= + + + +1 2 3 ... .

Defn: The series a a a a an
n=

∞

∑ = + + + +
1

1 2 3 4 ... converges and has sum S if its sequence of

partial sums converges to S; that is, if lim
n nS S
→ ∞

= .

Nth Term Test for Divergence: If lim
n na
→ ∞

≠ 0 , then the infinite series  an
n=

∞

∑
1

 must

diverge. (Note: Just because lim
n na
→ ∞

= 0  does not mean that the series converges.)

Usually we cannot get Sn  in a form where we can directly find whether or not lim
n nS
→ ∞

exists, so we use certain tests for convergence of an infinite series to determine whether
or not a series converges. These tests may tell us that the series converges without telling
us the actual sum. That is, they may prove that lim

n nS
→ ∞

 exists but not tell us what the limit

is equal to. Two types of series in which we can directly consider lim
n nS
→ ∞

 are:

1) telescoping (collapsing) series           Ex. [ ]
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A geometric series converges and has sum S
a

r
=

−1
 if and only if r <1. The

geometric series diverges if r ≥ 1.
Be sure to write out the first few terms of the series, and if the first term is not already
a 1, factor it out to correctly identify the values of a and r, as we did in class. Notice
particularly whether n (or whatever variable is used) begins with 0,1,2, etc.

Defn: A p-series is a series of the form 
1

1 n p
n=

∞

∑ , where p > 0.



Theorem: We can show by the Integral Test that a p-series converges if  p > 1 and
diverges if p ≤1.
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∑  (called the harmonic series) diverges
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Direct Comparison Test: Let an
n=

∞

∑
1

 and bn
n=

∞

∑
1

 be positive term infinite series.

1) If a bn n≤  for all n and bn
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∞

∑
1

 converges, then an
n=

∞

∑
1

 also must converge.

2) If b an n≥  for all  n and an
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∞

∑
1

 diverges, then bn
n=

∞

∑
1

 must also diverge.

Since we know exactly when p-series and geometric series converge and when they
diverge, we are most often comparing to these types of series, usually to p-series. We
will most often use the Comparison Test when an  is a quotient of terms of the form n

to a constant power.  Ex. 
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Limit Comparison Test: Let an
n=

∞

∑
1

 and bn
n=

∞

∑
1

 be positive term infinite series. Then if

lim
n

n

n

a
b

k
→ ∞

=  for some real number k > 0, then either both series converge or both series

diverge.

The Limit Comparison Test may be easier to use if you are not sure what inequalities you
need for the direct Comparison Test. To use the Limit Comparison Test, let an  be the nth
term of the series in question, and generally we choose bn  by taking the one term from
the numerator and the one term from the denominator that gets largest as n gets large. In

this way you should know whether bn
n=

∞

∑
1

 converges or diverges and lim
n

n

n

a
b→ ∞

 should equal

a positive real number.

Defn: An alternating series is a series of the form
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Alternating Series Test: The alternating series ( ) ......− = − + − + −+

=
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∑ 1 1
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converges if: 1) lim
n na
→ ∞

= 0

2) a an n+ <1  for all n

Ex. ( )−
=

∞

∑ 1
1
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 converges by the Alternating Series Test.

Do not try to apply the Alternating Series Test to a positive term series.

We also know the following about the sum of an alternating series:
If Sn  (the sum of the first n terms) is used to approximate the sum of a convergent
alternating series, the error will be less than the absolute value of the (n+1)st term of the
series. That is, with a convergent alternating series S S an n− < + 1 .

The Ratio Test: Let an
n=

∞

∑
1

 be an infinite series. Then

1) if lim
n

n

n

a
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+ <1 1, the series converges.

2) if lim lim
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n
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a
a

or
a
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+
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+> = ∞1 11  the series diverges.

3) if lim
n

n

n

a
a→ ∞

+ =1 1, then no conclusion can be reached by the Ratio Test.

The Ratio Test is used if an contains a factor of the form "a constant" to the n power or
factorial expressions.
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The Ratio Test is also used to find the radius of convergence of a power series.

Defn: A power series in (x - c) is a series of the form

a x c a a x c a x cn
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∑ − = + − + − +
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For a power series in x - c, exactly one of the following statements is true:
1) The power series converges only for x = c.
2) The power series converges for all real numbers x.
3) The power series converges on an interval of real numbers centered at c; that is, it

converges for x between c - r and c + r for some number r called the radius of
convergence.



Doing Problems on Convergence/Divergence

Step 1. Ask yourself: Do I want to determine if a sequence converges or if a series
converges? For a sequence, you just want to know if lim

n na
→ ∞

 exists, and if so,

what is it?
For a series, go on to Step 2.

Step 2: If you are trying to determine if an
n=

∞

∑
1

 converges, check, if it is relatively easy to

do so, lim
n na
→ ∞

. If this limit is not 0, by the Nth Term Test for Divergence, the series

an
n=

∞

∑
1

 diverges. If this limit is 0, go on; you need to use another test for

convergence or divergence. (If lim
n na
→ ∞

 does not seem easy to find, there may be an

easier way to determine convergence or divergence.)

Step 3: If the exact sum of the series is asked for at this point in the course it is probably
either a collapsing series or a geometric series. In the case of a collapsing series,
your write-up should show exactly what Sn  equals, then you should find lim

n nS
→ ∞

,

and you should use the definition of convergence of an infinite series. For finding
the sum of a geometric series, identify a and r correctly and use the formula

S
a

r
=

−1
 if r <1. If not one of these kinds of problems, go to:

Step 4. Decide if you have an alternating series or a positive term series. If you have an
alternating series, use the Alternating Series Test. If you have a positive term
series, go to step 4.

Step 5. If you have a positive term series, use the Direct Comparison Test, the Limit
Comparison Test or the Ratio Test. If there is a trig expression or log expression,
etc. as a factor of an , you may want to make a comparison such as one of the
following:

e.g. sin 2

2 2

1n
n n

≤ ,        
1 1

ln n n
>  (since ln n n< ) ,    

1 1
n n nsin

≥  since sin n ≤1

A comparison test is usually used if each term in the numerator and denominator
is a term of the form nc  where c is a constant. For a kind of series where you
would use a Comparison Test, you should be able to tell whether you are pretty
sure the series converges or diverges before starting your "proof" by taking the
quotient of the "dominant" terms in the numerator and the denominator. If either
the numerator or denominator contains factorial expressions or a term of the form
cn , you often want to use the Ratio Test, but you may want to make a comparison

first. For example, 
1 1

n n n! !+
<  or 

n
n

n
n n+

<
2 2

. It is easiest to use the Ratio Test

when there is not a sum in either the numerator or the denominator.
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