2.4 Differentiation of Parametric Functions

If a curve can be represented as parametric functions, y = f(t) and x = g(t) with both x and y differentiable with respect to t, then

 $\frac{dy}{dx}$ can be found in terms of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ which are related by the chain rule

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{1}{dx/dt}$$

provided
$$\frac{dx}{dt} \neq 0$$

Example 2.9

Given parametric functions:

$$y = \cos 2t$$
, $x = \sin t$.
Find $\frac{dy}{dx}$.

Ans:
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy}{dt} \cdot \frac{1}{dx/dt} = (-2\sin 2t) \cdot \left(\frac{1}{\cos t}\right) = -4\sin t$$

Find
$$\frac{dy}{dx}$$
 from the parametric functions,
 $x = t^2$, $y = t^3$.

Ans.:
$$\frac{dy}{dx} = 3t^2$$
. $\frac{1}{2t} = \frac{3}{2}t$

Example 2.11

Find
$$\frac{dy}{dx}$$
 if $y = e^t \sin t$ and $x = \ln(t^2)$.

Ans:
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{1}{dx/dt} = \frac{te^t}{2} (\sin t + \cos t)$$

a) The parametric functions of a curve are given by $\frac{dy}{dy} = \frac{dy}{dx} = \frac{dy}{dx}$

$$y = t^3 - 12t$$
, $x = 7t + 2$. Find $\frac{dy}{dx}$ if $t = 3$.

b) If $x = \cosh^{-1} t$, $y = \sinh^{-1} t$, find $\frac{dy}{dx}$.

2.5 Higher order derivatives

Let $y = 2x^4 - 5x^3 + 3x^2 - 2x + 4$. If y is differentiable wrt x, then

$$\frac{dy}{dx} = 8x^3 - 15x^2 + 6x - 2$$

Note:

• $\frac{dy}{dx}$ is also a polynomial of x. Thus, it is also a differentiable function of x. We can find its derivative by:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(8x^3 - 15x^2 + 6x - 2) = 24x^2 - 30x + 6$$

■ This derivative $\frac{d}{dx} \left(\frac{dy}{dx} \right)$ is called the second (second order) derivative wrt x and is written as $\frac{d^2y}{dx^2}$.

If the $\frac{d^2y}{dx^2}$ is a differentiable function of x then we can obtain the third order derivative provided the derivative exist:

$$\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3} = 48x - 30$$

Other notation:

$$f'(x) = \frac{d}{dx} [f(x)]$$

$$f''(x) = \frac{d}{dx} \left[\frac{d}{dx} [f(x)] \right] = \frac{d^2}{dx^2} [f(x)]$$

$$f''(x) = \frac{d}{dx} \left[\frac{d^2}{dx^2} [f(x)] \right] = \frac{d^3}{dx^3} [f(x)]$$

The differentiation can continue as long as the derivative exists.

Thus if y = f(x) then the first *n* derivatives are

given by:
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$, $\frac{d^4y}{dx^4}$,..., $\frac{d^ny}{dx^n}$

or

$$y'$$
, y'' , y''' , $y^{(4)}$, ..., $y^{(n)}$

or

$$f'(x), f''(x), f'''(x), f^{(4)}(x), \dots, f^{(n)}(x)$$

To summarise, if *n* is a positive integer then

$$f^{(n)}(x) = \frac{d^n}{dx^n} [f(x)]$$
 is the n^{th} derivative of f ,

which is obtained by differentiating the function, n times consecutively. n is called the order of the derivative.

If $y = 2x^3 - 11x^2 + 12x - 5$, find the first four derivatives of y.

Example 2.14

If
$$y = x^5 - 3x^3 - 2x + 1$$
, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Hence, evaluate $\frac{d^2y}{dx^2}$ at $x = 2$.

Example 2.15: Higher order derivatives and parametric functions

If
$$x = 7t + 2$$
, $y = t^3 - 12t$, find $\frac{d^2y}{dx^2}$.

Solution:

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{1}{dx/dt} = \frac{3t^2 - 12}{7}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{3t^2 - 12}{7} \right)$$

$$= \frac{d}{dt} \left(\frac{3t^2 - 12}{7} \right) \cdot \frac{dt}{dx} = \frac{3}{7} (2t) \cdot \frac{1}{7}$$

$$= \frac{6t}{49}$$

Example 2.16

A parametrized curve is given by the equations

$$x = 3\cosh\theta$$
, $y = 4\sinh\theta$. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

Ans:
$$\frac{4}{3} \coth \theta$$
; $-\frac{4}{9} \operatorname{cosech}^3 \theta$

Example 2.17: Higher order derivatives and implicit differentiation

(a)
$$y^2 = x^2 + 2x$$
, find $\frac{d^2y}{dx^2}$.

- (b) If $xy + y^2 = 1$, find the value of $\frac{d^2y}{dx^2}$ at the point (0,-1).
- (c) Use implicit differentiation to find

$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ for $2\sqrt{y} = x - y$.

Solution:

(a) Given
$$y^2 = x^2 + 2x$$

To find
$$\frac{dy}{dx}$$
:

$$\frac{d}{dx}y^2 = \frac{d}{dx}(x^2 + 2x)$$

$$2y\frac{dy}{dx} = 2x + 2$$

$$\therefore \frac{dy}{dx} = \frac{x+1}{y}$$

To find
$$\frac{d^2y}{dx^2}$$
:

$$2y\frac{dy}{dx} = 2x + 2$$

$$\frac{d}{dx}\left(y\frac{dy}{dx}\right) = \frac{d}{dx}(x+1)$$

$$y\frac{d^2y}{dx^2} + \frac{dy}{dx} = 1$$

$$\frac{d^2y}{dx^2} = \frac{1 - \frac{dy}{dx}}{y} = \frac{1 - \frac{x+1}{y}}{y} = \frac{y - x - 1}{y^2}$$

You are observing a rocket launch from a point 4000 feet from the launch pad. When the observation angle is $\pi/3$, the angle is increasing at $\pi/12$ feet per second. How fast is the rocket travelling?